Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Heat treatments induce changes in the protein structure in infant milk formulas (IMFs). The present study aims to investigate whether these structural modifications affect protein digestion. Model IMFs (1.3% proteins), with a bovine or a human whey protein profile, were unheated or heated at 67.5 °C or 80 °C to reach 65% of denaturation, resulting in six protein structures. IMFs were submitted to in vitro static gastrointestinal digestion simulating infant conditions. During digestion, laser light scattering was performed to analyze IMF destabilization and SDS-PAGE, OPA assay and cation exchange chromatography were used to monitor proteolysis. Results showed that, during gastric digestion, α-lactalbumin and β-lactoglobulin were resistant to hydrolysis in a similar manner for all protein structures within IMFs (p > 0.05), while the heat-induced denaturation of lactoferrin significantly increased its susceptibility to hydrolysis. Casein hydrolysis was enhanced when the native casein micelle structure was modified, i.e. partially disintegrated in the presence of lactoferrin or covered by heat-denatured whey proteins. The IMF destabilization at the end of the gastric digestion varied with protein structures, with larger particle size for IMF containing native casein micelles. During intestinal digestion, the kinetics of protein hydrolysis varied with the IMF protein structures, particularly for IMFs containing denatured lactoferrin, exhibiting higher proteolysis degree (67.5 °C and 80 °C vs. unheated) and essential amino acid bioaccessibility (67.5 °C vs. unheated). Overall, the protein structures, generated by modulating the whey protein profile and the heating conditions, impacted the IMF destabilization during the gastric phase and the proteolysis during the entire simulated infant digestion.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0fo01362eDOI Listing

Publication Analysis

Top Keywords

protein structures
24
whey protein
12
protein profile
12
675 °c
12
structures imfs
12
imf destabilization
12
protein
11
vitro static
8
digestion
8
digestion model
8

Similar Publications

The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has highlighted the critical need for safe and effective vaccines. In this study, subunit nanovaccine formulations were developed using the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein encapsulated in polymeric nanoparticles composed of poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL). Two surfactants, poly(vinyl alcohol) (PVA) and sodium cholate (SC), were evaluated during formulation via a modified water-in-oil-in-water (w/o/w) emulsion-solvent evaporation method.

View Article and Find Full Text PDF

Pentameric ligand-gated ion channels control synaptic neurotransmission via an allosteric mechanism, whereby agonist binding induces global protein conformational changes that open an ion-conducting pore. For the proton-activated bacterial () ligand-gated ion channel (GLIC), high-resolution structures are available in multiple conformational states. We used a library of atomistic molecular dynamics (MD) simulations to study conformational changes and to perform dynamic network analysis to elucidate the communication pathways underlying the gating process.

View Article and Find Full Text PDF

Ambient Air Pollution and the Severity of Alzheimer Disease Neuropathology.

JAMA Neurol

September 2025

Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia.

Importance: Exposure to fine particulate matter air pollution (PM2.5) may increase risk for dementia. It is unknown whether this association is mediated by dementia-related neuropathologic change found at autopsy.

View Article and Find Full Text PDF

Importance: Black individuals have a twofold higher rate of prostate cancer death in the US compared with the average population with prostate cancer. Few guidelines support race-conscious screening practices among at-risk Black individuals.

Objective: To examine structural factors that facilitate or impede access to prostate cancer screening among Black individuals in the US.

View Article and Find Full Text PDF

c-Jun N-terminal kinases (JNKs), a subfamily of mitogen-activated protein kinases (MAPKs), are key mediators of cellular responses to environmental stress, inflammation, and apoptotic signals. The three isoforms-JNK1, JNK2, and JNK3 exhibit both overlapping and isoform-specific functions. While JNK1 and JNK2 are broadly expressed across tissues and regulate immune signaling, cell proliferation, and apoptosis, JNK3 expression is largely restricted to the brain, heart, and testis, where it plays a crucial role in neuronal function and survival.

View Article and Find Full Text PDF