Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The process of manufacturing infant milk formulas (IMFs) involves heat treatments that can lead to whey protein denaturation. The objective of the study was to determine how protein composition affects the denaturation kinetics of the whey proteins within IMFs. Three model IMFs (1.3% of cow's milk protein) were produced with a caseins: whey proteins ratio of 40:60, differing only by the whey protein composition. The kinetics of heat-induced denaturation of α-lactalbumin, β-lactoglobulin and lactoferrin were investigated between 67.5 °C and 80 °C by chromatographic quantification of the residual native proteins. Results showed that the heat-denaturation of α-lactalbumin was reduced when β-lactoglobulin was absent. The heat-denaturation of lactoferrin was not affected by the composition of the IMFs but its presence enhanced the heat-denaturation of β-lactoglobulin. This study revealed that, for higher heat treatments (90 °C/15 s, 75 °C/15 min), IMF containing α-lactalbumin and lactoferrin preserved a higher proportion of native whey proteins than IMFs containing β-lactoglobulin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2019.125296 | DOI Listing |