Chemical Characterization and Evaluation of Antimicrobial Properties of the Wild Medicinal Mushroom Growing in Northern Moroccan Forests.

Life (Basel)

Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Department of Sciences, Environment and Territorial Planning, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.

Published: May 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

is an extensively famous medicinal mushroom distributed worldwide. Despite being widely grown in Moroccan forests, there are no studies on its nutritional, nutraceutical and pharmaceutical values. Herein, the objective of this study was to investigate the chemical characterization and antimicrobial properties of methanolic extract. Total phenolic, flavonoid, tannin, ascorbic acid and carotenoid contents were determined by spectrophotometry. The results revealed that the most prevalent bioactive compounds were phenolics and flavonoids, with total values of 154.60 mg GAE/g of dry methanolic extract (dme) and 60.55 mg CE/mg of dme, respectively. A GC-MS analysis identified 80 biologically active molecules, which were mainly divided into the following major groups: sugars (49.49%), organic acids (8.89%), fatty acids (7.75%), amino acids (7.44%), steroids (7.32%), polyphenols (5.92%), and others (13.16%). Additionally, 22 individual phenolic compounds were identified and quantified using HPLC-MS, with emphasis on kaempferol (1714 µg/g of dry weight (dw)), apigenin (1955 µg/g dw) and quercetin (947.2 µg/g dw). The methanolic extract of indicated strong antioxidant capacity by means of the following: DPPH radical-scavenging activity (53.7 µg/mL), β-carotene/linoleate assay (43.75 µg/mL), and reducing power assay (76.62 µg/mL). Furthermore, the extract exhibited potent antimicrobial properties against seven human pathogenic microorganisms, including two bacteria and five fungal strains, at concentrations ranging from 1 to 16 mg/mL. The most sensitive pathogen was (MIC = MFC = 1 mg/mL), while was the most resistant one (MIC = 16 mg/mL and MFC ≥ 16 mg/mL). Overall, our findings demonstrated valuable nutritional and bioactive compound attributes, and potent antioxidant and antimicrobial properties, of growing in Moroccan forests. Moreover, these findings suggest that the Moroccan mushroom can be extremely useful for the food and medicinal industries to positively affect socioeconomic status.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223331PMC
http://dx.doi.org/10.3390/life13051217DOI Listing

Publication Analysis

Top Keywords

antimicrobial properties
16
moroccan forests
12
methanolic extract
12
chemical characterization
8
medicinal mushroom
8
characterization evaluation
4
antimicrobial
4
evaluation antimicrobial
4
properties
4
properties wild
4

Similar Publications

Objective: To standardize the drug dilutions administered intravenously in a Pediatric Intensive Care Unit and to characterize these dilutions based on their pH, osmolarity, and vesicant nature. This aims to guide the selection of the most appropriate vascular access device, minimizing associated complications, and preserving the patient's venous capital.

Methods: Through a consensus between Pharmacy and Pediatric Services, the most frequently administered intravenous drugs in the Pediatric Intensive Care Unit were selected.

View Article and Find Full Text PDF

Nanodrug-based therapeutic interventions for tumor-associated microbiota modulation.

J Control Release

September 2025

Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China. Electronic address:

The tumor microenvironment (TME) is a complex and dynamic ecosystem that significantly influences tumor progression, immune modulation, and therapeutic response. A key component of the TME is the tumor-associated microbiota, which has emerged as an important player in cancer biology, affecting tumor metastasis, immune evasion, and resistance to treatments. The recent advent of high-throughput sequencing technologies has revolutionized our understanding of the microbiome, revealing distinct microbial communities across various tumor types.

View Article and Find Full Text PDF

Composite films biobased on Prosopis nigra polysaccharide for potential sustainable food packaging.

Int J Biol Macromol

September 2025

Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Laboratorio de Biomateriales y Bioprocesos, Av. Belgrano y Pasaje Caseros, SM de Tucumán, 4000, Tucumán. R, Argentina; Universidad Nacional de Tucumán, Facultad de Bioquímica, Química y Farmacia. Laboratorio de Bioproceso

This study explores the use of plant-derived polysaccharides to develop bio-based films for food-packaging applications. A film-forming solution composed of Prosopis nigra biopolymer (PN-B), carboxymethyl cellulose (CMC), and glycerol was optimized by central composite design (CCD), resulting in two formulations: P1 and P11. The films were subsequently functionalized with silver nanoparticles (AgNPs) synthesized via chemical and biological routes.

View Article and Find Full Text PDF

Wound healing is often hindered by bacterial infection, oxidative stress, and bleeding. Traditional dressings cannot simultaneously regulate multiple microenvironments. To address the shortcomings of traditional dressings, this study constructed a dual-network photothermal responsive multifunctional hydrogel OBCTCu based on four natural ingredients, including Bletilla striata polysaccharide (BSP), chitosan (CS), tannic acid (TA), and Cu.

View Article and Find Full Text PDF

Fresh walnuts are prone to moisture loss and spoilage after harvest, leading to reduced appearance and sensory quality. In this study, a multifunctional chitosan (CS)-based film was fabricated by incorporating a bacterial cellulose/oregano essential oil (BC/OEO) Pickering emulsion, with hydrogen bonding promoting cohesive matrix integration. The film's physicochemical properties, along with its antimicrobial and antioxidant activities, were systematically evaluated.

View Article and Find Full Text PDF