Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In pregnancies of women with obesity or diabetes, neonates are often overgrown. Thus, the pregnancy period in these women offers a window of opportunity to reduce childhood obesity by preventing neonatal overgrowth. However, the focus has been almost exclusively on growth in late pregnancy. This perspective article addresses possible growth deviations earlier in pregnancy and their potential contribution to neonatal overgrowth. This narrative review focuses on six large-scale, longitudinal studies that included ∼14,400 pregnant women with at least three measurements of fetal growth. A biphasic pattern in growth deviation, including growth reduction in early pregnancy followed by overgrowth in late pregnancy, was found in fetuses of women with obesity, gestational diabetes mellitus (GDM), or type 1 diabetes compared with lean women and those with normal glucose tolerance. Fetuses of women with these conditions have reduced abdominal circumference (AC) and head circumference (HC) in early pregnancy (observed between 14 and 16 gestational weeks), while later in pregnancy they present the overgrown phenotype with larger AC and HC (from approximately 30 gestational weeks onwards). Fetuses with early-pregnancy growth reduction who end up overgrown presumably have undergone in utero catch-up growth. Similar to postnatal catch-up growth, this may confer a higher risk of obesity in later life. Potential long-term health consequences of early fetal growth reduction followed by in utero catch-up growth need to be explored.

Download full-text PDF

Source
http://dx.doi.org/10.2337/dc22-2409DOI Listing

Publication Analysis

Top Keywords

fetal growth
12
growth reduction
12
catch-up growth
12
growth
11
women obesity
8
neonatal overgrowth
8
late pregnancy
8
early pregnancy
8
fetuses women
8
gestational weeks
8

Similar Publications

Fetal standard plane detection is essential in prenatal care, enabling accurate assessment of fetal development and early identification of potential anomalies. Despite significant advancements in machine learning (ML) in this domain, its integration into clinical workflows remains limited-primarily due to the lack of standardized, end-to-end operational frameworks. To address this gap, we introduce FetalMLOps, the first comprehensive MLOps framework specifically designed for fetal ultrasound imaging.

View Article and Find Full Text PDF

ObjectiveTo investigate the effects of zinc concentration on palatal development in fetal mice and its association with the aryl hydrocarbon receptor (AhR) signaling pathway.MethodsPregnant C57BL/6J mice were fed diets with varying zinc concentrations and randomly divided into a zinc-rich (ZR) group, a normal-zinc (NZ) group, and a zinc-deficient (ZD) group. Embryonic development was observed, and the expression levels of AhR signaling pathway-related factors were examined.

View Article and Find Full Text PDF

Sigmoid volvulus and uterine torsion are both rare and challenging conditions in pregnancy, and the coexistence of these conditions is particularly difficult to diagnose. Herein, we report a case of a 38-year-old pregnant woman at 30 weeks of gestation, with a history of two prior cesarean sections, who presented with severe abdominal pain, vomiting, and constipation, and was eventually diagnosed with both sigmoid volvulus and uterine torsion during surgery. Clinicians should consider the possibility of bowel obstruction when a pregnant woman presents with severe abdominal pain, vomiting, and constipation, as early diagnosis is crucial.

View Article and Find Full Text PDF

Study Question: What is the effect of hCG on the epigenetic profile and the expression of other molecular factors in endometrial stromal cells (ESCs)?

Summary Answer: Our findings suggest that hCG treatment alters the molecular environment of decidualized ESCs, potentially influencing implantation and immune regulation through epigenetic modifications and changes in the levels of secreted proteins and micro-ribonucleic acids (miRNAs).

What Is Known Already: Embryo implantation depends not only on the quality of the embryo but also on the receptivity of the endometrium, the specialized lining of the uterus that undergoes dynamic changes to support pregnancy. Effective communication between the maternal and fetal compartments, facilitated by molecular signals and cellular interactions, is essential for successful implantation.

View Article and Find Full Text PDF