Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Noise exposure can destroy the synaptic connections between hair cells and auditory nerve fibers without damaging the hair cells, and this synaptic loss could contribute to difficult hearing in noisy environments. In this study, we investigated whether delivering lithium chloride to the round-window can regenerate synaptic loss of cochlea after acoustic overexposure. Our rat animal model of noise-induced cochlear synaptopathy caused about 50% loss of synapses in the cochlear basal region without damaging hair cells. We locally delivered a single treatment of poloxamer 407 (vehicle) containing lithium chloride (either 1 mM or 2 mM) to the round-window niche 24 hours after noise exposure. Controls included animals exposed to noise who received only the vehicle. Auditory brainstem responses were measured 3 days, 1 week, and 2 weeks post-exposure treatment, and cochleas were harvested 1 week and 2 weeks post-exposure treatment for histological analysis. As documented by confocal microscopy of immunostained ribbon synapses, local delivery of 2 mM lithium chloride produced synaptic regeneration coupled with corresponding functional recovery, as seen in the suprathreshold amplitude of auditory brainstem response wave 1. Western blot analyses revealed that 2 mM lithium chloride suppressed N-methyl-D-aspartate (NMDA) receptor expression 7 days after noise-exposure. Thus, round-window delivery of lithium chloride using poloxamer 407 reduces cochlear synaptic loss after acoustic overexposure by inhibiting NMDA receptor activity in rat model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202264PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0284626PLOS

Publication Analysis

Top Keywords

lithium chloride
24
delivery lithium
12
nmda receptor
12
hair cells
12
synaptic loss
12
round-window delivery
8
noise exposure
8
damaging hair
8
chloride round-window
8
acoustic overexposure
8

Similar Publications

Exploring the Effect of Anion Substitution on the Solid Ionic Conductor NaTaCl.

Inorg Chem

September 2025

Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany.

Isovalent anion substitution has been shown to have a tremendous effect on the transport properties in lithium halide solid ionic conductors. Although sodium-ion solid state batteries based on chloride ionic conductors have recently gathered significant attention, investigations of anion substitution in sodium containing chlorides remain scarce. Here, we investigate the role of Br isoelectronic anion substitution in a perovskite-related compound with nominal composition of NaTaCl.

View Article and Find Full Text PDF

Conductive hydrogels have emerged as promising materials for flexible wearable electronics; however, their facile fabrication remains challenging. This study presents an antifreeze, antibacterial, and conductive hydrogel constructed from biomacromolecules sodium carboxymethylcellulose (CMC-Na) and polyvinyl alcohol (PVA). The hydrogel was synthesized via a simple one-pot method in an ethylene glycol/water (EG/H₂O) binary solvent system, incorporating lithium chloride (LiCl) and clove essential oil (CEO), followed by a single freeze-thaw cycle.

View Article and Find Full Text PDF

Upcycling plastic waste into single-atom catalysts (SACs) not only offers a sustainable solution for plastic waste management but also yields valuable functional materials for catalytic applications. Here, we report a simple and scalable method to transform various types of plastics, including polyethylene, polypropylene, polystyrene, polyethylene terephthalate, polyvinyl chloride, and their mixtures, into a diversity of porous SACs with different coordination chemistry and their excellent applications in a variety of catalytic reactions. Lamellar transition metal chloride salts (Ni, Fe, Co, Mn, and Cu) are employed as a template and catalyst for confined carbonization of plastics into layered SACs.

View Article and Find Full Text PDF

BaTiO Nanoparticle-Induced Interfacial Electric Field Optimization in Chloride Solid Electrolytes for 4.8 V All-Solid-State Lithium Batteries.

Nanomicro Lett

September 2025

Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.

Chloride-based solid electrolytes are considered promising candidates for next-generation high-energy-density all-solid-state batteries (ASSBs). However, their relatively low oxidative decomposition threshold (~ 4.2 V vs.

View Article and Find Full Text PDF

Naphthalene exposure inhibits osteogenic differentiation via the reactive oxygen species-ubiquitin pathway.

Ecotoxicol Environ Saf

August 2025

Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea. Electronic address:

While acute and chronic toxicities of naphthalene have been well documented, its effects on osteogenesis remain unexplored. In this study, we investigated the toxicity of naphthalene on osteoblast function using osteoblast-like MG-63 cells. Naphthalene at concentrations of 5-50 μM, which were low enough to not affect cell viability, effectively suppressed alkaline phosphatase (ALP) activity and matrix mineralization in MG-63 cells.

View Article and Find Full Text PDF