Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present a general adaptive latent space tuning approach for improving the robustness of machine learning tools with respect to time variation and distribution shift. We demonstrate our approach by developing an encoder-decoder convolutional neural network-based virtual 6D phase space diagnostic of charged particle beams in the HiRES ultrafast electron diffraction (UED) compact particle accelerator with uncertainty quantification. Our method utilizes model-independent adaptive feedback to tune a low-dimensional 2D latent space representation of ∼1 million dimensional objects which are the 15 unique 2D projections (x,y),...,(z,p_{z}) of the 6D phase space (x,y,z,p_{x},p_{y},p_{z}) of the charged particle beams. We demonstrate our method with numerical studies of short electron bunches utilizing experimentally measured UED input beam distributions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.107.045302DOI Listing

Publication Analysis

Top Keywords

latent space
12
phase space
12
space tuning
8
machine learning
8
charged particle
8
particle beams
8
space
6
adaptive autoencoder
4
autoencoder latent
4
tuning robust
4

Similar Publications

Organ initiation is often driven by extracellular signaling molecules that activate precursor cells competent to receive and respond to a given signal, yet little is known about the dynamics of competency in space and time during development. Teeth are excellent organs to study cellular competency because they can be activated with the addition of a single signaling ligand, Ectodysplasin (Eda). To investigate the role of Eda in tooth specification, we generated transgenic sticklebacks and zebrafish with heat shock-inducible Eda overexpression.

View Article and Find Full Text PDF

This article proposes a novel model-based planning framework for freeway ramp metering (RM), denoted as Koopman-driven linearized model-based offline planning (KLMOP). This framework integrates the model predictive control (MPC) and offline reinforcement learning (RL) under assumptions of a linear Markov decision process (MDP) with the Koopman operator. KLMOP introduces a fully linearized control framework by learning and modeling the dynamics, reward function, and value function in a latent space through a Koopman-based latent dynamical model (KLDM) and a pessimistic value iteration (PEVI) algorithm.

View Article and Find Full Text PDF

Heartbeat detection and personal authentication using a 60 GHz Doppler sensor.

Front Digit Health

August 2025

Architecture Laboratory, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.

Background: Microwave Doppler sensors, capable of detecting minute physiological movements, enable the measurement of biometric information, such as walking patterns, heart rate, and respiration. Unlike fingerprint and facial recognition systems, they offer authentication without physical contact or privacy concerns. This study focuses on non-contact seismocardiography using microwave Doppler sensors and aims to apply this technology for biometric authentication.

View Article and Find Full Text PDF

Spatial similarity of functional connectivity profiles across matching anatomical locations in individuals is often calculated to delineate individual differences in functional networks. Likewise, spatial similarity is assessed across average functional connectivity profiles of groups to evaluate the maturity of functional networks during development. Despite its widespread use, spatial similarity is limited to comparing two samples at a time.

View Article and Find Full Text PDF

Non-intrusive neuroimaging technology offers fast and robust diagnostic tools for neuro-disorder disease diagnosis, such as Attention-Deficit/Hyperactivity Disorder (ADHD). Resting-state functional magnetic imaging (rs-fMRI) has been demonstrated to have great potential for such applications due to its unique capability and convenience in providing spatial-temporal brain imaging. One critical challenge of using rs-fMRI data is the high dimensionality for both spatial and temporal domains.

View Article and Find Full Text PDF