98%
921
2 minutes
20
Interoception, the representation of the body's internal state, plays a central role in emotion, motivation and wellbeing. Interoceptive sensibility, the ability to engage in sustained interoceptive awareness, is particularly relevant for mental health but is exclusively measured via self-report, without methods for objective measurement. We used machine learning to classify interoceptive sensibility by contrasting using data from a randomized control trial of interoceptive training, with functional magnetic resonance imaging assessment before and after an 8-week intervention (N = 44 scans). The neuroimaging paradigm manipulated attention targets (breath vs. visual stimuli) and reporting demands (active reporting vs. passive monitoring). Machine learning achieved high accuracy in distinguishing between interoceptive and exteroceptive attention, both for within-session classification (~80% accuracy) and out-of-sample classification (~70% accuracy), revealing the reliability of the predictions. We then explored the classifier potential for 'reading out' mental states in a 3-min sustained interoceptive attention task. Participants were classified as actively engaged about half of the time, during which interoceptive training enhanced their ability to sustain interoceptive attention. These findings demonstrate that interoceptive and exteroceptive attention is distinguishable at the neural level; these classifiers may help to demarcate periods of interoceptive focus, with implications for developing an objective marker for interoceptive sensibility in mental health research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10727490 | PMC |
http://dx.doi.org/10.1111/ejn.16045 | DOI Listing |
Front Digit Health
August 2025
Department of Ophthalmology, Stanford University, Palo Alto, CA, United States.
Introduction: Vision language models (VLMs) combine image analysis capabilities with large language models (LLMs). Because of their multimodal capabilities, VLMs offer a clinical advantage over image classification models for the diagnosis of optic disc swelling by allowing a consideration of clinical context. In this study, we compare the performance of non-specialty-trained VLMs with different prompts in the classification of optic disc swelling on fundus photographs.
View Article and Find Full Text PDFInt J Gen Med
September 2025
Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.
Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.
Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.
Neurotrauma Rep
August 2025
Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).
View Article and Find Full Text PDFJ Clin Exp Hepatol
August 2025
Dept of Histopathology, PGIMER, Chandigarh, 160012, India.
Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.
View Article and Find Full Text PDFFront Rehabil Sci
August 2025
Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
Introduction: Spinal cord injury (SCI) presents a significant burden to patients, families, and the healthcare system. The ability to accurately predict functional outcomes for SCI patients is essential for optimizing rehabilitation strategies, guiding patient and family decision making, and improving patient care.
Methods: We conducted a retrospective analysis of 589 SCI patients admitted to a single acute rehabilitation facility and used the dataset to train advanced machine learning algorithms to predict patients' rehabilitation outcomes.