98%
921
2 minutes
20
Semiconductor photocatalysis was a rising star in the sustainable transformation of solar energy for environmental problems governance. Herein, an S-scheme g-CN/HTiO heterostructure was constructed and applied to tetracycline hydrochloride (TCH) destruction. The g-CN/HTiO composite has a superior photocatalytic property to degrade TCH in contrast with bare g-CN and HTiO. The 20% g-CN/HTiO (CNHTO20) composite exhibited the optimum photocatalytic performance, and the degradation efficiency of 20 mg/L TCH reached 87.37% within 3 h (K = 0.572 min). The affluent active sites of the g-CN nanosheet and effective interfacial charge separation of the S-scheme pathway facilitated the excellent performance. Moreover, the ample oxygen vacancies (Ovs) act as the electron mediator, not only reducing the band gap energy by producing the formation of defect levels, but also broadening the photo response range and promoting the interfacial charge transfer. The coordination complexes formed between TCH molecules and Ti (IV) ions in CNHTO20 composites induce strong visible light absorption through ligand-metal charge transfer (LMCT). The Ti/Ti metal cycle in CNHTO20 was conducive to the separation of the photogenerated electron-hole pairs on the heterojunction interface as well. The ESR characterization and trapping experiments certified that the dominant substances were OH, O and h. The AQY calculated by the COD removal rate was 0.16%. Conclusively, the S-scheme heterojunction between HTiO and g-CN enabled the CNHTO photocatalyst with high redox ability and boosted photocatalytic performance accordingly. This study may shed some enlightenment on the construction of heterojunctions and the realistic treatment of wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.04.178 | DOI Listing |
Inorg Chem
September 2025
Laboratoire de Chimie Physique Matière et Rayonnement (LCPMR), CNRS UMR 7614, Sorbonne Université (SU), 4 place Jussieu, Paris 75005, France.
The one-photon KV X-ray photoelectron spectra of Na and its hydrated clusters [Na(HO)] ( = 1-6) are dominated by the unusual 1s → 1s3s transition. KV spectroscopy also reveals a pronounced redistribution of the 1s → 1s3p transition cross sections, directly correlated with hydration number and molecular arrangement. Its intrinsic two-step nature, involving simultaneous core ionization and core excitation, enables detailed investigation of solvation-induced electronic structure changes, including dipole-forbidden excitations, core-valence charge transfer, and subtle 1s → V energy shifts.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
The activation of methane and other gaseous hydrocarbons at low temperature remains a substantial challenge for the chemistry community. Here, we report an anaerobic photosystem based on crystalline borocarbonitride (BCN) supported Fe-O nanoclusters, which can selectively functionalize C-H bonds of methane, ethane, and higher alkanes to value-added organic chemicals at 12 °C. Scanning transmission electron microscopy and X-ray absorption spectroscopy corroborated the ultrafine FeOOH and FeO species in Fe-O clusters, which enhanced the interfacial charge transfer/separation of BCN as well as the chemisorption of methane.
View Article and Find Full Text PDFInorg Chem
September 2025
Yunnan Key Laboratory of Crystalline Porous Organic Functional Materials, College of Chemical and Materials Engineering, Qujing Normal University, Qujing 655011, China.
Sequential assembly of donor-acceptor components at the molecular level within a MOF is an effective strategy to achieve efficient electron-hole separation for enhancing the activity of photocatalysts. Meanwhile, the highly efficient and selective functionalization of tetrahydroisoquinoline (THIQ) under mild conditions remains an urgent demand in both the scientific and industrial communities. This work reports a donor-acceptor MOF photocatalyst () constructed by the coordinated assembly of donor and acceptor components, in which a naphthalene unit serves as an electron donor and a perylenediimide unit as an electron acceptor.
View Article and Find Full Text PDFLangmuir
September 2025
Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
Simultaneous sensing and quantification of pharmaceutically active compounds (PhACs) are crucial for protecting the environment and maintaining long-term ecological sustainability. This study focuses on the bio-based synthesis of BiS-ZnO nanocomposites (BiS-ZnO(bio)) using bio-extract for dual-analyte selective and simultaneous electrochemical monitoring of phenylbutazone (PBZ) and sulfamethoxazole (SMZ) in the environmental matrices. BiS-ZnO(bio) exhibited ZnO(bio) nanostructures embedded on BiS(bio) nanorods with an average rod length of 1409.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China.
Additive assisted strategies play a crucial role in optimizing the morphology and improving the performance of organic solar cells (OSCs), yet the molecular-level mechanisms remain unclear. Here, we employ molecular dynamics (AIMD) and density functional theory (DFT) to elucidate the influence of typical additives of 1,8-diiodooctane (DIO) and 3,5-dichlorobromobenzene (DCBB) on molecular packing, electronic structures, and charge transport. It can be observed that both additives can enhance the stacking properties of the donor and acceptor materials, yet they have different effects on the local electrostatic environment.
View Article and Find Full Text PDF