Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Compound-specific isotope analysis (CSIA) of organic water contaminants can provide important information about their sources and fate in the environment. Analyte enrichment from water remains nonetheless a critical yet inevitable step before measurement. Commercially available solid-phase extraction (SPE) sorbents are inherently nonselective leading to co-extraction of concurrent dissolved organic matter (DOM) and in turn to analytical interferences, especially for low-occurring contaminants. Here, we (i) increased extraction selectivity by synthesizing cyclodextrin polymers (α-, β-, γ-CDP) as SPE sorbents, (ii) assessed their applicability to carbon isotope analysis for a selection of pesticides, and (iii) compared them with commonly used commercial sorbents. Extraction with β-CDP significantly reduced backgrounds in gas chromatography-isotope ratio mass spectrometry (GC-IRMS) and enhanced sensitivity by a factor of 7.5, which was further confirmed by lower carbon-normalized C/C ratios in corresponding extracts as derived from dissolved organic carbon (DOC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Gibbs free energies of adsorption demonstrated weak competition between DOM and analyte on the three CDPs. No isotopic fractionation (ΔδC within ± 0.3‰) was observed for the investigated pesticides after using β-CDP as an SPE sorbent covering a range of concentrations (5-500 μg L), flow velocities (5-40 cm min), and sorbent regeneration (up to six times). The present study highlights the benefit of selecting innovative extraction sorbents to avoid interferences in advance. This strategy in combination with existing cleanup approaches offers new prospects for CSIA at field concentrations of tens to hundreds of nanograms per liter.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.2c05465DOI Listing

Publication Analysis

Top Keywords

isotope analysis
12
interferences advance
8
cyclodextrin polymers
8
carbon isotope
8
spe sorbents
8
dissolved organic
8
mass spectrometry
8
extraction
5
avoiding interferences
4
advance cyclodextrin
4

Similar Publications

Soil Carbon Availability Drives Depth-Dependent Responses of Microbial Nitrogen Use Efficiency to Warming.

Glob Chang Biol

September 2025

State Key Laboratory of Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory of Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China.

Microbial nitrogen use efficiency (NUE) describes the partitioning of organic N between microbial growth and N mineralization, which is crucial for assessing soil N retention. However, how warming affects NUE along soil depth remains unclear. Based on a whole-soil-profile warming experiment (0 to 100 cm, +4°C) on the Qinghai-Tibetan Plateau, combined with O and N isotope labeling techniques, we determined soil carbon (C) composition, edaphic properties, and microbial parameters.

View Article and Find Full Text PDF

Complementary Separation of Novel Synthetic Opioids.

J Am Soc Mass Spectrom

September 2025

Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States.

The escalating prevalence and diversity of fentanyl analogues poses an immediate concern for the global community. Fentanyl and its analogues are the primary contributors to both fatal and nonfatal overdoses in the United States. The most recent instances of fentanyl-related overdoses have been attributed to the illicit production of fentanyl, characterized by its exceptionally potent nature.

View Article and Find Full Text PDF

Radon (Rn) is a naturally occurring radioactive gas produced by the decay of uranium-bearing minerals in rocks and soils. Long-term exposure to elevated radon levels in drinking water is associated with an increased risk of stomach and lung cancers. This study aims to assess the concentration of radon in groundwater and evaluate its potential health risks in six cancer-affected districts, i.

View Article and Find Full Text PDF

Development of a certified reference material for per- and polyfluoroalkyl substances (PFAS) in textiles.

Anal Bioanal Chem

September 2025

Department of Analytical Chemistry and Reference Materials, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany.

Per- and polyfluoroalkyl substances (PFASs) are a large group of emerging organic pollutants that contaminate the environment, food, and consumer products. Textiles and other outdoor products are a major source of PFAS exposure due to their water-repellent impregnations. Determination of PFASs in textiles is increasingly important for enhancing their contribution to the circular economy.

View Article and Find Full Text PDF

Proton transfer plays an important role in both hydrogen and oxygen evolution reactions during electrocatalytic water splitting to produce green hydrogen. However, directly adapting the conventional proton/deuterium kinetic isotope effect to study proton transfer in heterogeneous electrocatalytic processes is challenging. Here we propose using the shift in the Tafel slope between protic and deuteric electrolytes, or the Tafel slope isotope effect, as an effective probe of proton transfer characteristics.

View Article and Find Full Text PDF