Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Accurate histologic grade assessment is helpful for clinical decision making and prognostic assessment of sinonasal squamous cell carcinoma (SNSCC). This research aimed to explore whether whole-tumor histogram analysis of apparent diffusion coefficient (ADC) maps with machine learning algorithms can predict histologic grade of SNSCC.

Methods: One hundred and forty-seven patients with pathologically diagnosed SNSCC formed this retrospective study. Sixty-six patients were low-grade (grade I/II) and eighty-one patients were high-grade (grade III). Eighteen histogram features were obtained from quantitative ADC maps. Additionally, the mean ADC value and clinical features were analyzed for comparison with histogram features. Machine learning algorithms were applied to build the best diagnostic model for predicting histological grade. The receiver operating characteristic (ROC) curve was used to evaluate the performance of each model prediction, and the area under the ROC curve (AUC) were analyzed.

Results: The histogram model based on three features (10th Percentile, Mean, and 90th Percentile) with support vector machine (SVM) classifier demonstrated excellent diagnostic performance, with an AUC of 0.947 on the testing dataset. The AUC of the histogram model was similar to that of the mean ADC value model (0.947 vs 0.957; P = 0.7029). The poor diagnostic performance of the clinical model (AUC = 0.692) was improved by the combined model incorporating histogram features or mean ADC value (P < 0.05).

Conclusion: ADC histogram analysis improved the projection of SNSCC histologic grade, compared with clinical model. The complex histogram model had comparable but not better performance than mean ADC value model.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00405-023-07989-9DOI Listing

Publication Analysis

Top Keywords

machine learning
12
learning algorithms
12
histologic grade
12
histogram features
12
whole-tumor histogram
8
histogram analysis
8
analysis apparent
8
apparent diffusion
8
diffusion coefficient
8
maps machine
8

Similar Publications

Introduction: Vision language models (VLMs) combine image analysis capabilities with large language models (LLMs). Because of their multimodal capabilities, VLMs offer a clinical advantage over image classification models for the diagnosis of optic disc swelling by allowing a consideration of clinical context. In this study, we compare the performance of non-specialty-trained VLMs with different prompts in the classification of optic disc swelling on fundus photographs.

View Article and Find Full Text PDF

Multi-Omics and Clinical Validation Identify Key Glycolysis- and Immune-Related Genes in Sepsis.

Int J Gen Med

September 2025

Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.

Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.

Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.

View Article and Find Full Text PDF

Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).

View Article and Find Full Text PDF

Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.

View Article and Find Full Text PDF

Introduction: Spinal cord injury (SCI) presents a significant burden to patients, families, and the healthcare system. The ability to accurately predict functional outcomes for SCI patients is essential for optimizing rehabilitation strategies, guiding patient and family decision making, and improving patient care.

Methods: We conducted a retrospective analysis of 589 SCI patients admitted to a single acute rehabilitation facility and used the dataset to train advanced machine learning algorithms to predict patients' rehabilitation outcomes.

View Article and Find Full Text PDF