98%
921
2 minutes
20
Purpose: Accurate histologic grade assessment is helpful for clinical decision making and prognostic assessment of sinonasal squamous cell carcinoma (SNSCC). This research aimed to explore whether whole-tumor histogram analysis of apparent diffusion coefficient (ADC) maps with machine learning algorithms can predict histologic grade of SNSCC.
Methods: One hundred and forty-seven patients with pathologically diagnosed SNSCC formed this retrospective study. Sixty-six patients were low-grade (grade I/II) and eighty-one patients were high-grade (grade III). Eighteen histogram features were obtained from quantitative ADC maps. Additionally, the mean ADC value and clinical features were analyzed for comparison with histogram features. Machine learning algorithms were applied to build the best diagnostic model for predicting histological grade. The receiver operating characteristic (ROC) curve was used to evaluate the performance of each model prediction, and the area under the ROC curve (AUC) were analyzed.
Results: The histogram model based on three features (10th Percentile, Mean, and 90th Percentile) with support vector machine (SVM) classifier demonstrated excellent diagnostic performance, with an AUC of 0.947 on the testing dataset. The AUC of the histogram model was similar to that of the mean ADC value model (0.947 vs 0.957; P = 0.7029). The poor diagnostic performance of the clinical model (AUC = 0.692) was improved by the combined model incorporating histogram features or mean ADC value (P < 0.05).
Conclusion: ADC histogram analysis improved the projection of SNSCC histologic grade, compared with clinical model. The complex histogram model had comparable but not better performance than mean ADC value model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00405-023-07989-9 | DOI Listing |
Front Digit Health
August 2025
Department of Ophthalmology, Stanford University, Palo Alto, CA, United States.
Introduction: Vision language models (VLMs) combine image analysis capabilities with large language models (LLMs). Because of their multimodal capabilities, VLMs offer a clinical advantage over image classification models for the diagnosis of optic disc swelling by allowing a consideration of clinical context. In this study, we compare the performance of non-specialty-trained VLMs with different prompts in the classification of optic disc swelling on fundus photographs.
View Article and Find Full Text PDFInt J Gen Med
September 2025
Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.
Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.
Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.
Neurotrauma Rep
August 2025
Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).
View Article and Find Full Text PDFJ Clin Exp Hepatol
August 2025
Dept of Histopathology, PGIMER, Chandigarh, 160012, India.
Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.
View Article and Find Full Text PDFFront Rehabil Sci
August 2025
Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
Introduction: Spinal cord injury (SCI) presents a significant burden to patients, families, and the healthcare system. The ability to accurately predict functional outcomes for SCI patients is essential for optimizing rehabilitation strategies, guiding patient and family decision making, and improving patient care.
Methods: We conducted a retrospective analysis of 589 SCI patients admitted to a single acute rehabilitation facility and used the dataset to train advanced machine learning algorithms to predict patients' rehabilitation outcomes.