Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dissolved organic matter (DOM) is a kind of substance with complex compositions and wide molecular weight distribution, which can strongly combine with various pollutants. Therefore, the binding characteristics of DOM and heavy metal pollutants can be studied specifically according to the binding characteristics of DOM and pollutants. In this study, DOM in surface water bodies was divided into three levels (MW < 1 kDa, 1 kDa < MW < 5 kDa, MW > 5 kDa) according to different molecular weights (MW). The binding properties were investigated by fluorescence spectrum analysis and complex model. Four components (C1-C4) were identified by PARAFAC. Among them, the contribution rate of protein-like components C1, C2 and C4 to the total fluorescence intensity reached more than 78%, and the log K values of low molecular weight components were the highest, which were 3.28, 3.14 and 3.47, respectively, indicating higher binding ability with Cu.With the decrease of molecular weight, the log K value increases, indicating that the complexation is more stable. The humic component C3 in high molecular weight has stronger binding stability with Cu, but the number of binding sites for C3 is 0.36, while that for C2 is 1.51, indicating that its binding sites and binding ability are relatively low. The results showed that the DOM ligand of Cu in surface water showed a certain molecular weight dependence. In addition, different MW DOM lead to different pollution forms. Different properties of DOM ligand combined with Cu were studied in order to control the migration, transformation, bioavailability, morphology and stability of heavy metal pollutants, and to provide theoretical support for the practical application management of surface water pollution control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.118067DOI Listing

Publication Analysis

Top Keywords

molecular weight
8
dissolved organic
8
organic matter
8
surface water
8
binding characteristics
8
characteristics dom
8
characterization copper
4
copper binding
4
binding molecular
4
weight fractions
4

Similar Publications

Biomolecular dynamics in the microsecond-to-millisecond (µs-ms) timescale are linked to various biological functions, such as enzyme catalysis, allosteric regulation, and ligand recognition. In solution state NMR, Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments are commonly used to probe µs-ms timescale motions, providing detailed kinetic, thermodynamic, and mechanistic information at the atomic level. For investigating conformational dynamics in high-molecular-weight biomolecules, methyl groups serve as ideal probes due to their favorable relaxation properties, and C CPMG relaxation dispersion is widely employed for characterizing dynamics in selectively CH-labeled samples.

View Article and Find Full Text PDF

Using high- and low-surface flatness fruits of Ziziphus jujuba Mill. cv. "Lingwuchangzao" at different developmental stages as test materials, this study examined the mechanisms underlying variations in fruit appearance and internal quality.

View Article and Find Full Text PDF

Photodegradable nanoparticles with sphere, worm, and vesicle morphologies were synthesized following polymerization induced self-assembly (PISA), incorporating a photoresponsive phenyl vinyl ketone (PVK) block and a nonphoto responsive 2-hydroxypropyl methacrylamide (HPMA) block. The photodegradation of nanoparticles under UV revealed that the initial shapes of sphere and vesicle particles are retained even until 7 h and after 24 h of photo-induced degradation, respectively, despite a significant reduction in molecular weight (M). This could be due to the assembly of degraded PVK fragments in the hydrophobic region, maintaining the relative hydrophilic to hydrophobic ratio.

View Article and Find Full Text PDF

Excessive gestational weight gain (GWG) is associated with various adverse pregnancy outcomes, including disruption of placental function and fetal development. Iron transport through the placenta is crucial for fetal growth, and transferrin receptor 2 (TfR2) plays a key role in iron homeostasis. However, the effect of excessive GWG on placental TfR2 expression and neonatal iron parameters remains unclear.

View Article and Find Full Text PDF

Diagnosis of Cytomegalovirus infection in a very low birth weight infant using metagenomic next-generation sequencing: A case report.

Medicine (Baltimore)

September 2025

The Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.

Rationale: Cytomegalovirus (CMV) is a DNA virus from the herpesvirus family that is widespread among humans. Very low birth weight infants (VLBWI) are particularly susceptible to postnatal CMV infection due to their compromised immune systems. The clinical manifestations of postnatal CMV infection are often nonspecific, which complicates early detection and may lead to multi-organ dysfunction and long-term sequelae.

View Article and Find Full Text PDF