98%
921
2 minutes
20
Brain oedema is a life-threatening complication of various neurological conditions. Understanding molecular mechanisms of brain volume regulation is critical for therapy development. Unique insight comes from monogenic diseases characterized by chronic brain oedema, of which megalencephalic leukoencephalopathy with subcortical cysts (MLC) is the prototype. Variants in MLC1 or GLIALCAM, encoding proteins involved in astrocyte volume regulation, are the main causes of MLC. In some patients, the genetic cause remains unknown. We performed genetic studies to identify novel gene variants in MLC patients, diagnosed by clinical and MRI features, without MLC1 or GLIALCAM variants. We determined subcellular localization of the related novel proteins in cells and in human brain tissue. We investigated functional consequences of the newly identified variants on volume regulation pathways using cell volume measurements, biochemical analysis and electrophysiology. We identified a novel homozygous variant in AQP4, encoding the water channel aquaporin-4, in two siblings, and two de novo heterozygous variants in GPRC5B, encoding the orphan G protein-coupled receptor GPRC5B, in three unrelated patients. The AQP4 variant disrupts membrane localization and thereby channel function. GPRC5B, like MLC1, GlialCAM and aquaporin-4, is expressed in astrocyte endfeet in human brain. Cell volume regulation is disrupted in GPRC5B patient-derived lymphoblasts. GPRC5B functionally interacts with ion channels involved in astrocyte volume regulation. In conclusion, we identify aquaporin-4 and GPRC5B as old and new players in genetic brain oedema. Our findings shed light on the protein complex involved in astrocyte volume regulation and identify GPRC5B as novel potentially druggable target for treating brain oedema.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393393 | PMC |
http://dx.doi.org/10.1093/brain/awad146 | DOI Listing |
J Biochem Mol Toxicol
September 2025
Department of Rehabilitation Medicine, Hebei Engineering University Affiliated Hospital, Handan, Hebei, China.
Blood-Brain Barrier (BBB) dysfunction acts as a key mediator of ischemic brain injury, contributing to brain edema, inflammatory cell infiltration, and neuronal damage. The integrity of the BBB is largely maintained by tight junction proteins, such as Claudin-5, and its disruption exacerbates neurological deficits. Neurokinin B (NKB), a neuropeptide that belongs to the tachykinin family, has been implicated in various physiological processes, including neuroinflammation and vascular function.
View Article and Find Full Text PDFJ Integr Neurosci
August 2025
Department of Neurology, Peking University First Hospital Taiyuan Hospital, 030000 Taiyuan, Shanxi, China.
Background: Remote ischemic conditioning (RIC), a novel neuroprotective therapy, has broad potential for reducing the occurrence and recurrence of cerebrovascular events, yet its mechanisms are not incompletely understood. The aim of this study is to investigate whether RIC alleviates apoptosis, inflammation, and reperfusion injury in rat models of ischemic stroke by regulating the Elabela (ELA)-apelin-Apelin receptor (APJ) system.
Methods: We established a rat model of middle cerebral artery occlusion (MCAO) with ischemia-reperfusion injury, and RIC was administered twice daily for 3 days post-MCAO.
J Integr Neurosci
August 2025
Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, 150001 Harbin, Heilongjiang, China.
Background And Purpose: Ciprofol, a novel intravenous anesthetic, has been shown to exert protective effects against ischemic stroke, a leading cause of death and disability; however, its molecular mechanisms remain unclear. This study aimed to explore the molecular mechanisms underlying the neuroprotective effects of ciprofol using metabolomics.
Methods: This study used a middle cerebral artery occlusion (MCAO) rat model to simulate cerebral ischemia-reperfusion injury (CIRI).
Neural Plast
September 2025
Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
Astrocytes play a crucial role in ensuring neuronal survival and function. In stroke, astrocytes trigger the unfolded protein response (UPR) to restore endoplasmic reticulum homeostasis. Mesencephalic astrocyte-derived neurotrophic factor (MANF), a newly identified endoplasmic reticulum stress-induced neurotrophic factor, attenuates cerebral ischemic injury by reducing inflammatory responses.
View Article and Find Full Text PDFOncol Res
September 2025
Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China.
Objectives: The Sorbin and SH3 domain containing 1 (SORBS1), a protein linked to insulin signaling CBL interaction, was investigated for its role in pancreatic cancer apoptosis. This study explored polyphyllin H (PPH)'s ability to restore SORBS1-knockdown-mediated repair functions.
Methods: PANC-1 cells were divided into Blank, overexpression (OE), and knockdown groups.