Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Knowledge graphs are an increasingly common data structure for representing biomedical information. These knowledge graphs can easily represent heterogeneous types of information, and many algorithms and tools exist for querying and analyzing graphs. Biomedical knowledge graphs have been used in a variety of applications, including drug repurposing, identification of drug targets, prediction of drug side effects, and clinical decision support. Typically, knowledge graphs are constructed by centralization and integration of data from multiple disparate sources. Here, we describe BioThings Explorer, an application that can query a virtual, federated knowledge graph derived from the aggregated information in a network of biomedical web services. BioThings Explorer leverages semantically precise annotations of the inputs and outputs for each resource, and automates the chaining of web service calls to execute multi-step graph queries. Because there is no large, centralized knowledge graph to maintain, BioThing Explorer is distributed as a lightweight application that dynamically retrieves information at query time. More information can be found at https://explorer.biothings.io, and code is available at https://github.com/biothings/biothings_explorer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10153288PMC

Publication Analysis

Top Keywords

knowledge graphs
16
biothings explorer
12
knowledge graph
12
federated knowledge
8
biomedical knowledge
8
knowledge
7
graphs
5
explorer query
4
query engine
4
engine federated
4

Similar Publications

Objective: To analyze the hotspots and frontiers in the field of subarachnoid hemorrhage using the bibliometrics method and providing references for academic research.

Methods: All published studies related to subarachnoid hemorrhage published in the Web of Science core database from 1 January 2016 to 25 September 2021 were retrospectively identified using VOSviewer and CiteSpace software. Visualization VOSviewer and CiteSpace software were used to perform statistical and cluster analyses on authors, countries, institutions, keywords, and co-cited documents.

View Article and Find Full Text PDF

The tumor microenvironment is a dynamic eco system where cellular interactions drive cancer progression. However, inferring cell-cell communication from non-spatial scRNA-seq data remains challenging due to incomplete li gand-receptor databases and noisy cell type annotations. H ere, we propose scGraphDap, a graph neural network frame work that integrates functional state pseudo-labels and graph structure learning to improve both cell type annotation an d CCC inference.

View Article and Find Full Text PDF

Oral bioavailability property prediction based on task similarity transfer learning.

Mol Divers

September 2025

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.

View Article and Find Full Text PDF

Large language models (LLMs) have demonstrated transformative potential for materials discovery in condensed matter systems, but their full utility requires both broader application scenarios and integration with ab initio crystal structure prediction (CSP), density functional theory (DFT) methods and domain knowledge to benefit future inverse material design. Here, we develop an integrated computational framework combining language model-guided materials screening with genetic algorithm (GA) and graph neural network (GNN)-based CSP methods to predict new photovoltaic material. This LLM + CSP + DFT approach successfully identifies a previously overlooked oxide material with unexpected photovoltaic potential.

View Article and Find Full Text PDF

Pretraining plays a pivotal role in acquiring generalized knowledge from large-scale data, achieving remarkable successes as evidenced by large models in CV and NLP. However, progress in the graph domain remains limited due to fundamental challenges represented by feature heterogeneity and structural heterogeneity. Recent efforts have been made to address feature heterogeneity via Large Language Models (LLMs) on text-attributed graphs (TAGs) by generating fixed-length text representations as node features.

View Article and Find Full Text PDF