Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microplastics (MPs) are a hot environmental contaminant now. However, researchers paid little attention to their effects on immune organs such as the thymus. Here, we exposed chickens to a concentration gradient of polystyrene microplastics (PS-MPs) and then followed the decrease in the thymus index. HE staining showed cellular infiltration in the thymus. The assay kit corroborated that PS-MPs impelled oxidative stress in the thymus: increased MDA levels, downregulated antioxidants such as SOD, CAT, and GSH, and significantly undermined total antioxidant capacity. Western blotting and qRT-PCR results showed that Nrf2/NF-κB, Bcl-2/Bax, and AKT signaling pathways were activated in the thymus after exposure to PS-MPs. It stimulated the increased expression of downstream such as IL-1β, caspase-3, and Beclin1, triggering thymus inflammation, apoptosis, and autophagy. This study provides new insights into the field of microplastic immunotoxicity and highlights potential environmental hazards in poultry farming.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.etap.2023.104136DOI Listing

Publication Analysis

Top Keywords

polystyrene microplastics
8
thymus
7
microplastics mediate
4
mediate inflammatory
4
inflammatory responses
4
responses chicken
4
chicken thymus
4
thymus nrf2/nf-κb
4
nrf2/nf-κb pathway
4
pathway trigger
4

Similar Publications

The role of biochar in combating microplastic pollution: a bibliometric analysis in environmental contexts.

Beilstein J Nanotechnol

August 2025

Faculty of Engineering and Technology, Saigon University, 273 An Duong Vuong Street, Cho Quan Ward, Ho Chi Minh City 700000, Vietnam.

This study employs a bibliometric analysis using CiteSpace to explore research trends on the impact of biochar on microplastics (MPs) in soil and water environments. In agricultural soils, MPs reduce crop yield, alter soil properties, and disrupt microbial diversity and nutrient cycling. Biochar, a stable and eco-friendly material, has demonstrated effectiveness in mitigating these effects by restoring soil chemistry, enhancing microbial diversity and improving crop productivity.

View Article and Find Full Text PDF

Polystyrene particles induces asthma-like Th2-mediated lung injury through IL-33 secretion.

Environ Int

September 2025

Center for Respiratory Safety Research, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon 34113, Republic of Korea. Electronic address:

Plastics, particularly polystyrene (PS), are extensively used worldwide, especially in disposable packaging, which contributes to environmental pollution by generating microplastic particles. Herein, we investigated the pulmonary toxic effects of PS microplastics, focusing on airway inflammation and immune response. PS microplastic (50 nm to 1 μm) exposure was more likely to cause a severe pulmonary inflammatory response, particularly with smaller particle sizes.

View Article and Find Full Text PDF

Uptake and ecotoxicity of microplastics of different particle sizes in crop species.

NanoImpact

September 2025

Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun 136100, China. Electronic address:

Microplastics (MPs) pollution threatens aquatic and terrestrial ecosystems. Herein, we assessed the uptake of MPs in seedling roots of three crop species exposed to small (0.2 μm) and large (1.

View Article and Find Full Text PDF

Microplastics, tiny fragments resulting from the degradation of plastic waste, are abundant in water, air, and soil and are currently recognized as a global environmental problem. There is also growing evidence that nanosized microplastics (nanoplastics) can be hazardous to living species. Unlike most experimental methods, computer modeling is particularly well suited to studying the effects of such nanoplastics.

View Article and Find Full Text PDF

Flexible, Transparent, and Microfluidic-Compatible Wafer-Scale Metamaterial Sheets for Dual SEF and SERS Sensing.

ACS Appl Mater Interfaces

September 2025

National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China.

Integrating surface-enhanced fluorescence (SEF) and surface-enhanced Raman spectroscopy (SERS) into a single probe is a natural step forward for plasmon-enhanced spectroscopy (PES), as SEF enables enhanced fluorescent imaging for fast screening of targets, while SERS allows ultrasensitive trace molecular characterization with specificity. However, many challenges remain, e.g.

View Article and Find Full Text PDF