98%
921
2 minutes
20
Over 150 000 Americans are diagnosed with colorectal cancer (CRC) every year, and annually over 50 000 individuals will die from CRC, necessitating improvements in screening, prognostication, disease management, and therapeutic options. Tumor metastasis is the primary factor related to the risk of recurrence and mortality. Yet, screening for nodal and distant metastasis is costly, and invasive and incomplete resection may hamper adequate assessment. Signatures of the tumor-immune microenvironment (TIME) at the primary site can provide valuable insights into the aggressiveness of the tumor and the effectiveness of various treatment options. Spatially resolved transcriptomics technologies offer an unprecedented characterization of TIME through high multiplexing, yet their scope is constrained by cost. Meanwhile, it has long been suspected that histological, cytological, and macroarchitectural tissue characteristics correlate well with molecular information (e.g., gene expression). Thus, a method for predicting transcriptomics data through inference of RNA patterns from whole slide images (WSI) is a key step in studying metastasis at scale. In this work, we collected tissue from 4 stage-III (pT3) matched colorectal cancer patients for spatial transcriptomics profiling. The Visium spatial transcriptomics (ST) assay was used to measure transcript abundance for 17 943 genes at up to 5000 55-micron (i.e., 1-10 cells) spots per patient sampled in a honeycomb pattern, co-registered with hematoxylin and eosin (H&E) stained WSI. The Visium ST assay can measure expression at these spots through tissue permeabilization of mRNAs, which are captured through spatially (i.e., x-y positional coordinates) barcoded, gene specific oligo probes. WSI subimages were extracted around each co-registered Visium spot and were used to predict the expression at these spots using machine learning models. We prototyped and compared several convolutional, transformer, and graph convolutional neural networks to predict spatial RNA patterns at the Visium spots under the hypothesis that the transformer- and graph-based approaches better capture relevant spatial tissue architecture. We further analyzed the model's ability to recapitulate spatial autocorrelation statistics using SPARK and SpatialDE. Overall, the results indicate that the transformer- and graph-based approaches were unable to outperform the convolutional neural network architecture, though they exhibited optimal performance for relevant disease-associated genes. Initial findings suggest that different neural networks that operate on different scales are relevant for capturing distinct disease pathways (e.g., epithelial to mesenchymal transition). We add further evidence that deep learning models can accurately predict gene expression in whole slide images and comment on understudied factors which may increase its external applicability (e.g., tissue context). Our preliminary work will motivate further investigation of inference for molecular patterns from whole slide images as metastasis predictors and in other applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10127126 | PMC |
http://dx.doi.org/10.1016/j.jpi.2023.100308 | DOI Listing |
Magn Reson Med
September 2025
Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.
Purpose: To develop and evaluate a volumetric proton resonance frequency shift (PRF)-based thermometry method for monitoring thermal ablation in moving tissues.
Methods: A golden-angle-ordered 3D stack-of-radial MRI sequence was combined with an image-navigated multi-baseline (iNAV-MB) PRF method to reconstruct motion-compensated 3D temperature maps with high spatiotemporal resolution and volumetric coverage. Two radial MRI reconstruction techniques, k-space weighted image contrast filter (KWIC) and golden-angle radial sparse parallel (GRASP) MRI, were implemented and compared within a sliding window reconstruction framework.
Cell Rep Methods
September 2025
Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland; Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland. Electronic address:
In cancer research, multiplexed imaging allows detailed characterization of the tumor microenvironment (TME) and its link to patient prognosis. The integrated immunoprofiling of large adaptive cancer patient cohorts (IMMUcan) consortium collects multi-modal imaging data from thousands of patients with cancer to perform broad molecular and cellular spatial profiling. Here, we describe and compare two workflows for multiplexed immunofluorescence (mIF) and imaging mass cytometry (IMC) developed within IMMUcan to enable the generation of standardized data for cancer tissue analysis.
View Article and Find Full Text PDFJ Clin Exp Hepatol
August 2025
Dept of Histopathology, PGIMER, Chandigarh, 160012, India.
Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.
View Article and Find Full Text PDFFront Vet Sci
August 2025
Pathobiology and Population Science, Royal Veterinary College, Hatfield, United Kingdom.
Diffuse large B-cell lymphoma is the most common type of non-Hodgkin lymphoma (NHL) in humans, accounting for about 30-40% of NHL cases worldwide. Canine diffuse large B-cell lymphoma (cDLBCL) is the most common lymphoma subtype in dogs and demonstrates an aggressive biologic behaviour. For tissue biopsies, current confirmatory diagnostic approaches for enlarged lymph nodes rely on expert histopathological assessment, which is time-consuming and requires specialist expertise.
View Article and Find Full Text PDFJ R Soc Interface
September 2025
Institute of Intelligent Systems and Robotics, Sorbonne Université, Paris, Île-de-France, France.
A number of techniques have been developed to measure the three-dimensional trajectories of protists, which require special experimental set-ups, such as a pair of orthogonal cameras. On the other hand, machine learning techniques have been used to estimate the vertical position of spherical particles from the defocus pattern, but they require the acquisition of a labelled dataset with finely spaced vertical positions. Here, we describe a simple way to make a dataset of images labelled with vertical position from a single 5 min movie, based on a tilted slide set-up.
View Article and Find Full Text PDF