Colorectal cancer (CRC) remains a major health concern, with over 150,000 new diagnoses and more than 50,000 deaths annually in the United States, underscoring an urgent need for improved screening, prognostication, disease management, and therapeutic approaches. The tumor microenvironment (TME)-comprising cancerous and immune cells interacting within the tumor's spatial architecture-plays a critical role in disease progression and treatment outcomes, reinforcing its importance as a prognostic marker for metastasis and recurrence risk. However, traditional methods for TME characterization, such as bulk transcriptomics and multiplex protein assays, lack sufficient spatial resolution.
View Article and Find Full Text PDFBackground & Aims: Deep learning technologies have demonstrated the ability to identify dyssynergic defecation for diagnosis of common gastrointestinal motility disorders through nuanced interpretation of 3-dimensional high-definition anal manometry (3D-HDAM). We aimed to validate a deep learning algorithm capable of spatiotemporal analysis of 3D-HDAM in a multicenter setting.
Methods: We included 1214 consecutive anorectal manometry studies performed across 3 large health care systems between 2018 and 2022.
Colorectal cancer (CRC) remains a major health concern, with over 150,000 new diagnoses and more than 50,000 deaths annually in the United States, underscoring an urgent need for improved screening, prognostication, disease management, and therapeutic approaches. The tumor microenvironment (TME)-comprising cancerous and immune cells interacting within the tumor's spatial architecture-plays a critical role in disease progression and treatment outcomes, reinforcing its importance as a prognostic marker for metastasis and recurrence risk. However, traditional methods for TME characterization, such as bulk transcriptomics and multiplex protein assays, lack sufficient spatial resolution.
View Article and Find Full Text PDFPac Symp Biocomput
January 2024
Graph-based deep learning has shown great promise in cancer histopathology image analysis by contextualizing complex morphology and structure across whole slide images to make high quality downstream outcome predictions (ex: prognostication). These methods rely on informative representations (i.e.
View Article and Find Full Text PDFBackground: Spatial transcriptomics involves studying the spatial organization of gene expression within tissues, offering insights into the molecular diversity of tumors. While spatial gene expression is commonly amalgamated from 1-10 cells across 50-micron spots, recent methods have demonstrated the capability to disaggregate this information at subspot resolution by leveraging both expression and histological patterns. However, elucidating such information from histology alone presents a significant challenge but if solved can better permit spatial molecular analysis at cellular resolution for instances where Visium data is not available, reducing study costs.
View Article and Find Full Text PDFGraph-based deep learning has shown great promise in cancer histopathology image analysis by contextualizing complex morphology and structure across whole slide images to make high quality downstream outcome predictions (ex: prognostication). These methods rely on informative representations (i.e.
View Article and Find Full Text PDFThe advent of spatial transcriptomics technologies has heralded a renaissance in research to advance our understanding of the spatial cellular and transcriptional heterogeneity within tissues. Spatial transcriptomics allows investigation of the interplay between cells, molecular pathways and the surrounding tissue architecture and can help elucidate developmental trajectories, disease pathogenesis, and various niches in the tumor microenvironment. Photoaging is the histological and molecular skin damage resulting from chronic/acute sun exposure and is a major risk factor for skin cancer.
View Article and Find Full Text PDFBackground: Deep learning models can infer cancer patient prognosis from molecular and anatomic pathology information. Recent studies that leveraged information from complementary multimodal data improved prognostication, further illustrating the potential utility of such methods. However, current approaches: 1) do not comprehensively leverage biological and histomorphological relationships and 2) make use of emerging strategies to "pretrain" models (i.
View Article and Find Full Text PDFOver 150 000 Americans are diagnosed with colorectal cancer (CRC) every year, and annually over 50 000 individuals will die from CRC, necessitating improvements in screening, prognostication, disease management, and therapeutic options. Tumor metastasis is the primary factor related to the risk of recurrence and mortality. Yet, screening for nodal and distant metastasis is costly, and invasive and incomplete resection may hamper adequate assessment.
View Article and Find Full Text PDF