Over the past century, human lifespan has increased remarkably, yet the inevitability of aging persists. The disparity between biological age, which reflects pathological deterioration and disease, and chronological age, indicative of normal aging, has driven prior research focused on identifying mechanisms that could inform interventions to reverse excessive age-related deterioration and reduce morbidity and mortality. DNA methylation has emerged as an important predictor of age, leading to the development of epigenetic clocks that quantify the extent of pathological deterioration beyond what is typically expected for a given age.
View Article and Find Full Text PDFPac Symp Biocomput
January 2024
Graph-based deep learning has shown great promise in cancer histopathology image analysis by contextualizing complex morphology and structure across whole slide images to make high quality downstream outcome predictions (ex: prognostication). These methods rely on informative representations (i.e.
View Article and Find Full Text PDFBackground: Spatial transcriptomics involves studying the spatial organization of gene expression within tissues, offering insights into the molecular diversity of tumors. While spatial gene expression is commonly amalgamated from 1-10 cells across 50-micron spots, recent methods have demonstrated the capability to disaggregate this information at subspot resolution by leveraging both expression and histological patterns. However, elucidating such information from histology alone presents a significant challenge but if solved can better permit spatial molecular analysis at cellular resolution for instances where Visium data is not available, reducing study costs.
View Article and Find Full Text PDF