98%
921
2 minutes
20
Bismuth oxide nanoparticles with appropriate surface chemistry exhibit many interesting properties that can be utilized in a variety of applications. This paper describes a new route to the surface modification of bismuth oxide nanoparticles (BiO NPs) using functionalized beta-Cyclodextrin (β-CD) as a biocompatible system. The synthesis of BiO NP was done using PVA (poly vinyl alcohol) as the reductant and the Steglich esterification procedure for the functionalization of β-CD with biotin. Ultimately, the BiO NPs are modified using this functionalized β-CD system. The particle size of the synthesized BiO NPs is found to be in the range of 12-16 nm. The modified biocompatible systems were characterized using different characterization techniques such as Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and Differential Scanning Calorimetric analysis (DSC). Additionally, the antibacterial and anticancerous effects of the surface-modified BiO NP system were also investigated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142954 | PMC |
http://dx.doi.org/10.3390/molecules28083604 | DOI Listing |
Int J Nanomedicine
September 2025
Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, People's Republic of China.
Introduction: Oral squamous cell carcinoma (OSCC) has a poor prognosis due to its immunosuppressive tumor microenvironment (TME), in which tumor-associated macrophages (TAMs) play a pivotal role in promoting disease progression and therapeutic resistance. This study examines whether Prussian blue nanoparticles (PB NPs) could reprogram TAMs and block tumor-stroma communication in OSCC.
Methods: PB NPs were synthesized using polyvinylpyrrolidone-assisted coprecipitation and characterized by transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy.
RSC Adv
September 2025
Department of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
Bacterial detection is crucial for accurate clinical diagnostics and effective environmental monitoring. Particularly, , a pathogenic bacterium, can cause a wide range of infections, including meningitis, bloodstream infections, pneumonia, urinary tract infections, and wound or surgical site infections. Herein, a polypyrrole (PPy) functionalized TiCT -tin dioxide nanoparticle (SnO NPs) nanocomposite-based hybrid capacitive electrode for the electrochemical detection of ATCC 700603 is developed.
View Article and Find Full Text PDFACS Appl Bio Mater
September 2025
Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
The development of multifunctional nanoplatforms capable of drug delivery and real-time cellular imaging remains a key challenge in cancer theranostics. Herein, we report the development of a casein-protected maleic acid-derived nitrogen-doped carbon dot-based luminescent nanoplatform (MNCD@Cas NPs) for efficient delivery of the anticancer drug doxorubicin hydrochloride (DOX) to triple-negative breast cancer cells. Synthesized via a facile two-step method, the MNCD@Cas NPs exhibit bright blue fluorescence (λ = 390 nm), high water dispersibility, excellent colloidal stability, and substantial DOX loading capacity (∼84%) driven by electrostatic interactions.
View Article and Find Full Text PDFVet Parasitol
August 2025
Nano Biosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu 630004, India. Electronic address:
In the present work, the in vitro efficacy of titanium isopropoxide, Cassia auriculata flower extract and C. auriculata-mediated titanium nanoparticles (Ca-TiO NPs) as an acaricidal drug against Rhipicephalus (Boophilus) microplus (larvae, nymph and adult) and Haemaphysalis bispinosa (adult) was evaluated. The synthesized nanomaterial was then characterized through UV, XRD, FTIR, Zeta potential and HR-TEM techniques.
View Article and Find Full Text PDFMater Today Bio
October 2025
Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
Objectives With the increase of () drug resistance, it is increasingly difficult to cure fundamentally. Frequent and excessive use of antibiotics can lead to disturbances in the intestinal flora and even inflammatory bowel disease, so new drugs are urgently needed. Luteolin (LUT) has been found to have antimicrobial effects, but its water solubility is very low, and the antimicrobial effect is not ideal.
View Article and Find Full Text PDF