98%
921
2 minutes
20
Diet and nutrition have a substantial impact on the human microbiome, and interact with the microbiome, especially gut microbiome, to modulate various diseases and health status. Microbiome research has also guided the nutrition field to a more integrative direction, becoming an essential component of the rising area of precision nutrition. In this review, we provide a broad insight into the interplay among diet, nutrition, microbiome, and microbial metabolites for their roles in the human health. Among the microbiome epidemiological studies regarding the associations of diet and nutrition with microbiome and its derived metabolites, we summarize those most reliable findings and highlight evidence for the relationships between diet and disease-associated microbiome and its functional readout. Then, the latest advances of the microbiome-based precision nutrition research and multidisciplinary integration are described. Finally, we discuss several outstanding challenges and opportunities in the field of nutri-microbiome epidemiology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636640 | PMC |
http://dx.doi.org/10.1093/procel/pwad023 | DOI Listing |
Brain Behav
September 2025
Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Australia.
Background: Migraine pathophysiology involves a constellation of metabolic abnormalities. These interlinked contributory factors include mitochondrial dysfunction, an altered gut microbiome, neuroinflammation, oxidative stress, weight imbalance, and altered glucose metabolism. The ketogenic diet is an emerging therapy which may restore hypometabolism seen in chronic migraine.
View Article and Find Full Text PDFPhysiol Rep
September 2025
Center for Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Settsu, Japan.
This study investigated the association between parameters derived from bioelectrical impedance spectroscopy (BIS) and arterial stiffness, as measured using carotid-femoral pulse wave velocity (cfPWV) and brachial-ankle pulse wave velocity (baPWV) pulse wave velocities. Data from 292 Japanese adults were analyzed. BIS was used to assess the phase angle (PhA), extracellular water to intracellular water ratio (ECW/ICW), and body cell mass-to-free fat mass ratio (BCM/FFM).
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China. Electronic address:
Tea (Camellia sinensis) polysaccharides (TPS) and tea polysaccharide conjugates (TPC) are bioactive compounds found in tea leaves and flowers, attracting growing interest for their biological activities and emerging applications in food, pharmaceuticals, and cosmetics. Despite substantial progress in tea polyphenol research, studies focusing on TPS and TPC are still relatively underrepresented. This review fills a gap in the literature by summarizing the latest advancements in the extraction, characterization, and biological effects of TPS and TPC.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
September 2025
Chinese PLA Centers for Disease Control and Prevention, Beijing, China. Electronic address:
The transmission of mosquito-borne diseases is intrinsically linked to mosquito blood-feeding behavior, yet the metabolic adaptations of the midgut microbiota in response to blood meals remain poorly understood. This study aimed to characterize the structural and functional changes in the midgut microbiota of Aedes albopictus following blood feeding and to elucidate their potential physiological implications. In this study, we employed 16S rRNA gene amplification coupled with PacBio Sequel II sequencing to characterize shifts in the midgut microbiota of Aedes albopictus before and after blood feeding on mice.
View Article and Find Full Text PDFMeat Sci
September 2025
State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agricultu
The growing global population and economic development have increased the demand for meat with desired texture and flavor requirements. While intensive breeding and advancements in nutrition and management practices have driven significant improvements in meat production, sustainable solutions are still needed to further enhance both meat yield and quality. The Myostatin (MSTN) gene, which acts as an inhibitor of muscle growth and differentiation, has been extensively studied.
View Article and Find Full Text PDF