Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nitric Oxide (NO) signaling pathway plays a vital role in various physiological and pathophysiological processes including vasodilation, neurogenesis, inflammation, translation and protein regulation. NO signaling pathway is associated with various diseases such as cardiovascular diseases, vision impairment, hypertension and Alzheimer's disease. Human Endothelial Nitric Oxide Synthase (eNOS) bound with calcium regulatory protein (calmodulin (CaM)) to produce NO which initiates cGMP pathway. The current study employs to screen the novel compounds against human eNOS independent of calcium regulatory protein (CaM). The current effort emphasized that the deficiency of CaM leads to dysfunction of cGMP signaling pathway. In this work, a hybrid approach of high-throughput virtual screening and comparative molecular docking studies followed by molecular dynamic simulation analyses were applied. The screening of top ranked two novel compounds against eNOS were reported that showed effective binding affinity, retrieved through the DrugBank and ZINC database libraries. Comparative molecular docking analyses revealed that Val-104, Phe-105, Gln-247, Arg-250, Ala-266, Trp-330, Tyr-331, Pro-334, Ala-335, Val-336, Tyr-357, Met-358, Thr-360, Glu-361, Ile-362, Arg-365, Asn-366, Asp-369, Arg-372, Trp-447 and Tyr-475 are potent residues for interactional studies. High-throughput virtual screening approach coupled with molecular dynamic simulation and drug likeness rules depicted that ZINC59677432 and DB00456 are potent compounds to target eNOS. In conclusion, the proposed compounds are potent against eNOS based on extensive in silico analyses. Overall, the findings of this study may be helpful to design therapeutic targets against eNOS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10132633PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0284993PLOS

Publication Analysis

Top Keywords

signaling pathway
12
human enos
8
nitric oxide
8
calcium regulatory
8
regulatory protein
8
novel compounds
8
high-throughput virtual
8
virtual screening
8
comparative molecular
8
molecular docking
8

Similar Publications

Background: C-C motif chemokine ligand 3 (CCL3) is a crucial chemokine that plays a fundamental role in the immune microenvironment and is closely linked to the development of various cancers. Despite its importance, there is limited research regarding the expression and function of CCL3 in nasopharyngeal carcinoma (NPC). Therefore, this study seeks to examine the expression of CCL3 and assess its clinical significance in NPC using bioinformatics analysis and experiments.

View Article and Find Full Text PDF

Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine that acts as a central regulator of inflammation and immune responses across diverse organ systems. Functioning upstream in immune activation cascades, MIF influences macrophage polarization, T and B cell differentiation, and cytokine expression through CD74, CXCR2/4/7, and downstream signaling via NF-κB, ERK1/2, and PI3K/AKT pathways. This review provides a comprehensive analysis of MIF's mechanistic functions under both physiological and pathological conditions, highlighting its dual role as a protective mediator during acute stress and as a pro-inflammatory amplifier in chronic disease.

View Article and Find Full Text PDF

Background/aims: Ubiquitin D (UBD), a member of the ubiquitin-like modifier (UBL) family, is significantly overexpressed in various cancers and is positively correlated with tumor progression. However, the role and underlying mechanisms of UBD in rheumatoid arthritis (RA) remain poorly understood. This study aimed to investigate the effects of UBD knockdown on the progression of RA.

View Article and Find Full Text PDF

Objectives: Osteoarthritis (OA) is one of the most common chronic degenerative diseases, with chondrocyte apoptosis and extracellular matrix (ECM) degradation as the major pathological changes. The mechanical stimulation can attenuate chondrocyte apoptosis and promote ECM synthesis, but the underlying molecular mechanisms remain unclear. This study aims to investigate the role of primary cilia (PC) in mediating the effects of mechanical stimulation on OA progression.

View Article and Find Full Text PDF

Bortezomib resistance in multiple myeloma (MM) is a significant clinical challenge that limits the long-term effectiveness. Currently, there is a lack of reliable biomarkers to predict bortezomib resistance. Previous studies reported that several proteins regulate bortezomib resistance through targeting ubiquitin-proteasome pathways, including heat shock protein family A member 9 (HSPA9), dickkopf Wnt signaling pathway inhibitor 1 (DKK1), proteasome 26S subunit non-ATPase 14 (PSMD14), and tripartite motif containing 21 (TRIM21).

View Article and Find Full Text PDF