98%
921
2 minutes
20
Trade-off of high-strength and dynamic crosslinking of hydrogels remains an enormous challenge. Motivated by the self-healing property of biological tissues, the strategy of combining multiple dynamic bond mechanisms and a polysaccharide network is proposed to fabricate biomimetic hydrogels with sufficient mechanical strength, injectability, biodegradability, and self-healing property for bone reconstruction engineering. Stable acylhydrazone bonds endowed hydrogels with robust mechanical strength (>10 kPa). The integration of dynamic imine bonds and acylhydrazone bonds optimized the reversible characteristic to protect the cell during the injection and mimicked ECM microenvironment for cell differentiation as well as rapid adapting bone defect area. Furthermore, due to the slow enzymatic hydrolysis kinetics of chitosan and the self-healing properties of resulting networks, hydrogels exhibited a satisfactory biodegradation period (>8 weeks) that highly matches with bone regeneration. Additionally, rBMSC-laden hydrogels exhibited splendid osteogenic induction and bone reconstruction without prefabrication scaffolds and incubation, demonstrating tremendous potential for clinical application. This work proposes an efficient strategy for the construction of a low-cost multifunctional hydrogel, making polysaccharide-based hydrogels as the optimal carrier for enabling cellular functions in bone repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c02108 | DOI Listing |
Regen Biomater
August 2025
College of Textiles & Clothing, Institute of Functional Textiles and Advanced Materials, Qingdao 266071, China.
Bacterial infection in the injured skin may threaten the wound repair and skin regeneration owing to aggravated inflammation. The multifunctional dressings with persistent antibacterial activity and improved anti-inflammatory capability are urgently required. Herein, a type of heterogeneous zinc/catechol-derived resin microspheres (Zn/CFRs) composed of zinc ions (Zn) and zinc oxide (ZnO) nanoparticles was developed to impart the methacrylamide chitosan (CSMA)-oxidized hyaluronic acid (OHA) hydrogel with a persistent Zn release behavior.
View Article and Find Full Text PDFInt J Pharm X
June 2025
Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
Ultra-sensitive pH-responsive drug delivery system designed to operate within the slightly acidic microenvironment of tumors are highly desired for hydrogel applications in cancer therapy. In this study, 4-Formylbenzoic acid modified polyvinyl alcohol (PVA-FBA, PF) was synthesized and utilized as a carrier for encapsulating the anticancer drug Doxorubicin (Dox). This was subsequently crosslinked with polyethylenimine (PEI) via benzoic-imine bond to form drug-loaded PVA-FBA/PEI hydrogel (D-PFP).
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States.
Slippery liquid-infused porous surfaces (or "SLIPS") can prevent bacterial surface fouling, but they do not inherently possess the means to kill bacteria or reduce cell loads in surrounding media. Past reports show that the infused liquids in these materials can be leveraged to load and release antimicrobial agents, but these approaches are generally limited to the use of hydrophobic agents that are soluble in the infused oily phases. Here, we report the design of so-called "proto-SLIPS" that address this limitation and permit the release of highly water-soluble (or oil-insoluble) agents.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China.
Traditional dynamic membranes (DMs) are plagued by membrane fouling and low performance during long-term operation. In recent years, researchers have developed various functionalized dynamic membranes (FDMs) derived from DMs, employing different functional materials to provide an economically viable and promising solution for wastewater treatment. Nevertheless, there remains a gap in the comprehensive understanding of FDMs and the challenges encountered in their application.
View Article and Find Full Text PDFACS Macro Lett
September 2025
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
Polyesters are a widely used class of biomaterials thanks to their (bio)degradability and tunable thermomechanical properties. Introducing dynamic disulfide bonds into their backbone enables them to be degraded through different routes and also imparts self-healing properties. However, while numerous polymerization protocols exist with which to introduce disulfide bonds into linear polymers, these methods lack the versatility needed to produce materials with diverse thermomechanical properties.
View Article and Find Full Text PDF