98%
921
2 minutes
20
Peripheral nerve injuries cause various disabilities related to loss of motor and sensory functions. The treatment of these injuries typically requires surgical operations for improving functional recovery of the nerve. However, capabilities for continuous nerve monitoring remain a challenge. Herein, a battery-free, wireless, cuff-type, implantable, multimodal physical sensing platform for continuous in vivo monitoring of temperature and strain from the injured nerve is introduced. The thin, soft temperature, and strain sensors wrapped around the nerve exhibit good sensitivity, excellent stability, high linearity, and minimum hysteresis in relevant ranges. In particular, the strain sensor integrated with circuits for temperature compensation provides reliable, accurate strain monitoring with negligible temperature dependence. The system enables power harvesting and data communication to wireless, multiple implanted devices wrapped around the nerve. Experimental evaluations, verified by numerical simulations, with animal tests, demonstrate the feasibility and stability of the sensor system, which has great potential for continuous in vivo nerve monitoring from an early stage to complete regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202206839 | DOI Listing |
Front Med (Lausanne)
August 2025
Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China.
Background: This study aimed to analyze the epidemiological characteristics of tinea capitis (TC) and the changing trend of the pathogenic fungal spectrum in Hangzhou to assess the thermal tolerance of these pathogenic dermatophytes at 37°C.
Methods: Clinical, demographic, and mycological data of 454 TC patients were retrospectively collected.
Results: Among children with TC, 198 were females and 201 were males, with a median age of 5 years.
Bioresour Technol
September 2025
College of Forestry, Beijing Forestry University, Beijing 100083, PR China. Electronic address:
The timing of microbial inoculation is a decisive factor influencing both the efficiency and quality of green waste (GW) composting. This study evaluated the effects of applying a self-developed lignocellulose-degrading compound microbial inoculum at different composting phases (mesophilic, thermophilic, and cooling) compared to a commercial Effective Microorganisms agent. Thermophilic-phase inoculation (T2) was most effective by enhancing the complementary metabolic functions between strains, thus establishing an efficient lignocellulose degradation system.
View Article and Find Full Text PDFInt J Pharm
September 2025
Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Instit
Smart hydrogels have advanced rapidly in recent years. However, systems responsive to a single stimulus are typically triggered by specific cues, limiting their adaptability in complex and dynamic biological environments. To overcome this limitation, this study developed a dual-responsive hydrogel sensitive to both temperature and mechanical stress.
View Article and Find Full Text PDFACS Nano
September 2025
State Key Lab of New Ceramic Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
SnSe is a layered semiconductor with intrinsically low thermal conductivity, making it a promising candidate for thermoelectric and thermal management applications. However, detailed measurements of the intrinsic thermal conductivity of SnSe nanosheets grown by chemical vapor deposition (CVD) remain scarce. Here, monocrystalline SnSe nanosheets were synthesized by CVD, with systematic investigation of thickness-dependent in-plane thermal conductivity.
View Article and Find Full Text PDFMar Environ Res
September 2025
Division of Earth and Environmental System Sciences, Pukyong National University, Busan, 48513, Republic of Korea. Electronic address:
A total of 27 Alexandrium catenella strains isolated from Jinhae-Masan Bay were examined to assess differences in the toxicity and composition of paralytic shellfish toxins (PST). The strains exhibited widely variable toxicity, ranging from 0.02 to 360.
View Article and Find Full Text PDF