Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bacterial leaf streak of small-grain cereals is an economically important disease of wheat and barley crops. The disease occurs in many countries across the globe, with particular importance in regions characterized by high precipitation or areas in which sprinkler irrigation is used. Three genetically distinct lineages of the Gram-negative bacterium ( pv. , pv. , and pv. ) are responsible for most of the bacterial leaf streak infections on wheat and barley crops. Considering the seedborne nature of the pathogens, they are included in the A2 (high-risk) list of quarantine organisms for some European countries; hence, they are under strict quarantine control and zero tolerance. Due to the taxonomic complexities within , the exact geographic distribution of each pathovar has not yet been determined. In this mini review, we provide an updated overview of the detection and diagnosis of the bacterial leaf streak pathogens. First, a short history of the leaf streak pathogens is provided, followed by the symptomology and host range of the causal agents. Then, the utility of conventional methods and high-throughput molecular approaches in the precise detection and identification of the pathogens is explained. Finally, we highlight the role of quarantine inspections and early detection of the pathogen in combating the risk of bacterial leaf streak in the 21st century's small-grains cereals' industry.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PHYTO-09-22-0343-SADOI Listing

Publication Analysis

Top Keywords

leaf streak
24
bacterial leaf
20
detection diagnosis
8
diagnosis bacterial
8
wheat barley
8
barley crops
8
streak pathogens
8
leaf
6
streak
6
bacterial
5

Similar Publications

Bacterial leaf streak (BLS), caused by pv. (), has recently emerged as a significant threat to wheat production in the Northern Great Plains region of the US. Deploying resistant cultivars is an economical and practical method of controlling BLS.

View Article and Find Full Text PDF

pv. is a pathogen of rice responsible for bacterial leaf streak, a disease that can cause up to 32% yield loss. While it was first reported a century ago in Asia, its first report in Africa was in the 1980s.

View Article and Find Full Text PDF

Zeolitic imidazolate framework-8 nanoparticles: A promising nano-antimicrobial agent for sustainable management of bacterial leaf streak in rice.

Pestic Biochem Physiol

November 2025

State Key Laboratory of Agricultural and Forestry Biosecurity & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China. Electronic address:

Rice bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) significantly reduces rice yield and quality. Traditional chemical control methods often have limited efficacy and raise environmental concerns, highlighting the need for safer and more effective alternatives.

View Article and Find Full Text PDF

Pathogens hijack alternative splicing to rewire plant immunity: OsRBP11/OsNPR3 uncovered as a new vulnerability in rice.

Mol Plant

September 2025

College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China. Electronic address:

In the intricate molecular warfare between plants and pathogens, bacteria deploy sophisticated strategies to subvert host defenses. Xanthomonas oryzae pathogens, which cause devastating bacterial blight (BB) and bacterial leaf streak (BLS) in rice, utilize transcription activator-like effectors (TALEs) to manipulate host gene expression. Secreted by the type III secretion system and translocated by the type III translocon into host cells, TALEs directly bind specific DNA sequences (effector-binding elements, EBEs) in the 5'-terminal untranslated regions (UTRs) or within the promoter regions of host genes to activate transcription of these genes, including SWEETs sugar transporters and negative regulators of plant immunity (Xue et al.

View Article and Find Full Text PDF

Background: DNA demethylases regulate the levels of genomic DNA methylation in plants. The demethylase REPRESSOR OF SILENCING 1 (ROS1) is a crucial factor for modulating gene expression in plant disease responses. Bacterial leaf streak (BLS), caused by Xanthomonas oryzae pv.

View Article and Find Full Text PDF