Lessons from natural flight for aviation: then, now and tomorrow.

J Exp Biol

Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK.

Published: April 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Powered flight was once a capability limited only to animals, but by identifying useful attributes of animal flight and building on these with technological advances, engineers have pushed the frontiers of flight beyond our predecessors' wildest imaginations. Yet, there remain many key characteristics of biological flight that elude current aircraft design, motivating a careful re-analysis of what we have learned from animals already, and how this has been revealed experimentally, as well as a specific focus on identifying what remains unknown. Here, we review the literature to identify key contributions that began in biology and have since been translated into aeronautical devices or capabilities. We identify central areas for future research and highlight the importance of maintaining an open line of two-way communication between biologists and engineers. Such interdisciplinary, bio-informed analyses continue to push forward the frontiers of aeronautics and experimental biology alike.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10263153PMC
http://dx.doi.org/10.1242/jeb.245409DOI Listing

Publication Analysis

Top Keywords

flight
5
lessons natural
4
natural flight
4
flight aviation
4
aviation tomorrow
4
tomorrow powered
4
powered flight
4
flight capability
4
capability limited
4
limited animals
4

Similar Publications

Prevalence, characterization, and transmissible factors of foodborne pathogens in the Al-Qassim Region, Saudi Arabia.

Cell Mol Biol (Noisy-le-grand)

September 2025

Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, 51452 P.O. Box 6666, Saudi Arabia.

Foodborne illnesses pose a significant public health threat globally, particularly in Saudi Arabia, where the rapid growth of the food service sector has increased the risk of exposure to multidrug-resistant (MDR) bacteria. Traditional microbiological methods are often time-consuming and may lack precision, highlighting the need for faster and more accurate diagnostic alternatives. In this study, Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) was employed for the rapid and precise identification of bacterial contaminants in ready-to-eat (RTE) foods, alongside an assessment of their antibiotic resistance profiles.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the effects of various physical therapy interventions on fatigue and quality of life in patients with multiple sclerosis (MS) using a network meta-analysis of randomized controlled trials (RCTs).

Methods: A comprehensive literature search was conducted in PubMed, Web of Science, and Cochrane databases through April 1, 2025. Eligible RCTs compared different exercise interventions in MS patients, focusing on fatigue and quality of life outcomes.

View Article and Find Full Text PDF

Exposure to air pollution plays a significant role in human health. Current methods of measuring human exposure are often limited to outdoor measurements, are time intensive, or are unable to accurately measure certain classes of compounds. This study proposes human hair as a promising indicator of pollution exposure.

View Article and Find Full Text PDF

Microalgae-bacteria symbiosis system is significant for sustainable and low-carbon wastewater treatment, with self-aggregation being key to its stable operation and effective pollutant removal. Cellular motility is the main driving force behind self-aggregation, crucial for symbiosis stability, but the characteristics and patterns involved still remain largely unexplored. Here, cellular movement dynamics into the microalgae-activated sludge model (ASM3) is incorporated, enabling synchronized simulation of metabolic activities and movement behaviors through physical and biochemical interactions in bioreactor systems.

View Article and Find Full Text PDF

Background And Purpose: Ciprofol, a novel intravenous anesthetic, has been shown to exert protective effects against ischemic stroke, a leading cause of death and disability; however, its molecular mechanisms remain unclear. This study aimed to explore the molecular mechanisms underlying the neuroprotective effects of ciprofol using metabolomics.

Methods: This study used a middle cerebral artery occlusion (MCAO) rat model to simulate cerebral ischemia-reperfusion injury (CIRI).

View Article and Find Full Text PDF