98%
921
2 minutes
20
Background: Current treatments for lung cancer have their own deficiencies, such as severe adverse effect. Therefore, more safe and effective drugs are needed.
Purpose: Fuzheng Kang-Ai (FZKA for short) has been applied as an adjuvant treatment in advanced Non-Small Cell Lung Cancer (NSCLC) patients for decades in China, showing a definitive effect with minimal toxicities. However, the underlying mechanism is yet to be identified.
Study Design: Both in vitro and in vivo experiments were performed in this study to identify the exact mechanism by which FZKA inhibits NSCLC cell proliferation.
Methods: MTT and CCK-8 assays were used to detect cell viability. Xenograft model was performed for in vivo experiments. CircRNA and miRNA sequencing were used to find the differentially expressed circRNAs and miRNAs, respectively. qRT-PCR was performed to check the expression levels of circRNA, miRNA and mRNA. BaseScope was carried out to observe the expression of circRNA in situ. Actinomycin D and RNase R experiments were done to show the stability of circRNA. Nuclear-cytoplasmic fractionation and FISH were used to identify the localization of circRNA and miRNA. Pull-down, RIP, and luciferase activity assays were performed to show the biding ability of circRNA, miRNA and target proteins. Flow cytometry was done to observe cell apoptosis. Western blot and IHC were done to detect the protein expression. TCGA database was used to analyze the survival rate.
Results: FZKA inhibits NSCLC cell proliferation both in vitro and in vivo. Hsa_circ_0048091 and hsa-miR-378g were the most differentially expressed circRNA and miRNA, respectively, after FZKA treatment. Silencing hsa_circ_0048091 and overexpressing hsa-miR-378g promoted cell proliferation and reversed the inhibition effect of FZKA on NSCLC, respectively. Hsa-miR-378g was sponged by hsa_circ_0048091, and the overexpression of miR-378g reversed the inhibition effect of hsa_ circ_0048091 on NSCLC. ARRDC3, as a target of hsa-miR-378g, was increased by FZKA treatment. Silencing ARRDC3 reversed both the inhibition effect of FZKA and miR-378g inhibitor on NSCLC.
Conclusion: This study, for the first time, has established the function of hsa_circ_0048091, hsa- miR-378g, and ARRDC3 in lung cancer. It also shows that FZKA inhibits NSCLC cell proliferation through hsa_circ_0048091/hsa-miR-378g/ARRDC3 pathway, uncovering a novel mechanism by which FZKA controls human NSCLC cell growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2023.154819 | DOI Listing |
Cell Mol Biol (Noisy-le-grand)
September 2025
Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) using conventional therapeutic methods, drug resistance remains a major factor contributing to disease recurrence. In this study, we aimed to explore the potential benefits of combining PI3K inhibition with Cisplatin in the context of NSCLC-derived A549 cells. Human non-small cell lung cancer A549 cells were cultured and treated with BKM120, cisplatin, or their combination.
View Article and Find Full Text PDFJ Thorac Oncol
August 2025
Department of Radiation Medicine, Markey Cancer Center, University of Kentucky, Lexington, Kentucky.
Introduction: Cigarette smoking negatively affects lung cancer prognosis. Incorporating smoking history into stage-stratified survival analyses may improve prognostication.
Methods: Using the International Association for the Study of Lung Cancer ninth edition NSCLC database, we evaluated the association between smoking status at diagnosis and overall survival (OS) using Kaplan-Meier plots and multivariate Cox proportional hazard regression models adjusted for age, region, sex, histologic type, performance status, and TNM stage.
Brief Bioinform
August 2025
Department of Respiratory Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an 710004, China.
Accurate tumor mutation burden (TMB) quantification is critical for immunotherapy stratification, yet remains challenging due to variability across sequencing platforms, tumor heterogeneity, and variant calling pipelines. Here, we introduce TMBquant, an explainable AI-powered caller designed to optimize TMB estimation through dynamic feature selection, ensemble learning, and automated strategy adaptation. Built upon the H2O AutoML framework, TMBquant integrates variant features, minimizes classification errors, and enhances both accuracy and stability across diverse datasets.
View Article and Find Full Text PDFDrug Dev Res
September 2025
R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India.
Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality, with "epidermal growth factor receptor (EGFR)" mutations playing a pivotal role in tumor progression and carcinogenesis. "Third-generation epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs)," such as Osimertinib, have significantly improved treatment outcomes by overcoming resistance mechanisms like the T790M mutation. However, Osimertinib's clinical application is limited by cardiotoxicity concerns, necessitating safer alternatives.
View Article and Find Full Text PDFDrug Dev Res
September 2025
Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.
The epidermal growth factor receptor (EGFR) is a common diver gene for lung cancer (NSCLC), which leads to an increasing death rate worldwide. This study reports the design, synthesis, and biological evaluation of triazole-clubbed pyrimidine derivatives (RDa-RDm) as potential anticancer agents. Thirteen compounds were synthesized and screened against the A549 lung cancer cell line.
View Article and Find Full Text PDF