98%
921
2 minutes
20
Accurate tumor mutation burden (TMB) quantification is critical for immunotherapy stratification, yet remains challenging due to variability across sequencing platforms, tumor heterogeneity, and variant calling pipelines. Here, we introduce TMBquant, an explainable AI-powered caller designed to optimize TMB estimation through dynamic feature selection, ensemble learning, and automated strategy adaptation. Built upon the H2O AutoML framework, TMBquant integrates variant features, minimizes classification errors, and enhances both accuracy and stability across diverse datasets. We benchmarked TMBquant against nine widely used variant callers, including traditional tools (e.g. Mutect2, VarScan2, Strelka2) and recent AI-based methods (DeepSomatic, Octopus), using 706 whole-exome sequencing tumor-control pairs. To evaluate clinical relevance, we further assessed TMBquant through survival analyses across immunotherapy-treated cohorts of non-small cell lung cancer (NSCLC), nasopharyngeal carcinoma (NPC), and the two NSCLC subtypes: lung adenocarcinoma and lung squamous cell carcinoma. In each cohort, TMBquant consistently achieved the highest hazard ratios, demonstrating superior patient stratification compared to all other methods. Importantly, TMBquant maintained robust predictive performance across both high-TMB (NSCLC) and low-TMB (NPC) settings, highlighting its generalizability across cancer types with distinct biological characteristics. These findings establish TMBquant as a reliable, reproducible, and clinically actionable tool for precision oncology. The software is open source and freely available at https://github.com/SomaticCaller/SomaticCaller. To enhance reproducibility, we provide detailed usage instructions and representative code snippets for TMBquant in the Methods section (see Code Availability).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12415849 | PMC |
http://dx.doi.org/10.1093/bib/bbaf455 | DOI Listing |
Brief Bioinform
August 2025
Department of Respiratory Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an 710004, China.
Accurate tumor mutation burden (TMB) quantification is critical for immunotherapy stratification, yet remains challenging due to variability across sequencing platforms, tumor heterogeneity, and variant calling pipelines. Here, we introduce TMBquant, an explainable AI-powered caller designed to optimize TMB estimation through dynamic feature selection, ensemble learning, and automated strategy adaptation. Built upon the H2O AutoML framework, TMBquant integrates variant features, minimizes classification errors, and enhances both accuracy and stability across diverse datasets.
View Article and Find Full Text PDF