Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A variety of single-cell RNA-seq (scRNA-seq) clustering methods has achieved great success in discovering cellular phenotypes. However, it remains challenging when the data confounds with batch effects brought by different experimental conditions or technologies. Namely, the data partitions would be biased toward these nonbiological factors. Meanwhile, the batch differences are not always much smaller than true biological variations, hindering the cooperation of batch integration and clustering methods. To overcome this challenge, we propose single-cell RNA-seq debiased clustering (SCDC), an end-to-end clustering method that is debiased toward batch effects by disentangling the biological and nonbiological information from scRNA-seq data during data partitioning. In six analyses, SCDC qualitatively and quantitatively outperforms both the state-of-the-art clustering and batch integration methods in handling scRNA-seq data with batch effects. Furthermore, SCDC clusters data with a linearly increasing running time with respect to cell numbers and a fixed graphics processing unit (GPU) memory consumption, making it scalable to large datasets. The code will be released on Github.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2023.3260003DOI Listing

Publication Analysis

Top Keywords

single-cell rna-seq
12
batch effects
12
rna-seq debiased
8
debiased clustering
8
clustering batch
8
clustering methods
8
batch integration
8
scrna-seq data
8
batch
7
clustering
6

Similar Publications

Background: Most RNA-seq datasets harbor genes with extreme expression levels in some samples. Such extreme outliers are usually treated as technical errors and are removed from the data before further statistical analysis. Here we focus on the patterns of such outlier gene expression to investigate whether they provide insights into the underlying biology.

View Article and Find Full Text PDF

Breast cancer is a highly heterogeneous disease with diverse outcomes, and intra-tumoral heterogeneity plays a significant role in both diagnosis and treatment. Despite its importance, the spatial distribution of intra-tumoral heterogeneity is not fully elucidated. Spatial transcriptomics has emerged as a promising tool to study the molecular mechanisms behind many diseases.

View Article and Find Full Text PDF

The ferroptosis-associated gene TIMP1 facilitates skin scar formation through the interaction with CST3 in fibroblasts.

Int Immunopharmacol

September 2025

Medical Center of Burn Plastic and Wound Repair, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China. Electronic address:

Skin scar formation is a critical pathological process in wound healing, but its underlying regulatory mechanisms remain incompletely elucidated. By integrating analyses of Bulk-RNA seq and single-cell RNA sequencing (scRNA-seq) data, we identified that ferroptosis-related biological processes potentially play a key role in skin scar formation. Further mechanistic studies demonstrated that in human dermal fibroblast cells, the ferroptosis regulator TIMP metallopeptidase inhibitor 1 (TIMP1) significantly promotes fibroblast differentiation toward a mature phenotype through interactions with cystatin C (CST3), characterized by upregulated expression of myofibroblast differentiation markers such as α-smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF), along with enhanced cell proliferation and migration abilities.

View Article and Find Full Text PDF

Classical Hodgkin Lymphoma (CHL) is characterized by a complex tumor microenvironment (TME) that supports disease progression. While immune cell recruitment by Hodgkin and Reed-Sternberg (HRS) cells is well-documented, the role of non-malignant B cells in relapse remains unclear. Using single-cell RNA sequencing (scRNA-seq) on paired diagnostic and relapsed CHL samples, we identified distinct shifts in B-cell populations, particularly an enrichment of naïve B cells and a reduction of memory B cells in early-relapse compared to late-relapse and newly diagnosed CHL.

View Article and Find Full Text PDF

Problem: Preeclampsia (PE) is a leading cause of perinatal maternal and fetal mortality. Clinical and pathological studies suggest that placental and decidual cell dysfunction may contribute to this condition. However, the pathogenesis of PE remains poorly understood.

View Article and Find Full Text PDF