98%
921
2 minutes
20
With the increasing restrictions and concerns about legacy poly- and perfluoroalkyl substances (PFAS), the production and usage of alternatives, i.e., perfluoroalkyl ether carboxylic acids (PFECAs), have risen recently. However, there is a knowledge gap regarding the bioaccumulation and trophic behaviors of emerging PFECAs in coastal ecosystems. The bioaccumulation and trophodynamics of perfluorooctanoic acid (PFOA) and its substitutes (PFECAs) were investigated in Laizhou Bay, which is located downstream of a fluorochemical industrial park in China. Hexafluoropropylene oxide trimer acid (HFPO-TrA), perfluoro-2-methoxyacetic acid (PFMOAA) and PFOA constituted the dominant compounds in the ecosystem of Laizhou Bay. PFMOAA was dominant in invertebrates, whereas the long-chain PFECAs preferred to accumulate in fishes. The PFAS concentrations in carnivorous invertebrates were higher than those in filter-feeding species. Considering migration behaviors, the ∑PFAS concentrations followed the order oceanodromous fish < diadromous fish < non-migratory fish. The trophic magnification factors (TMFs) of long-chain PFECAs (HFPO-TrA, HFPO-TeA and PFO5DoA) were >1, suggesting trophic magnification potential, while biodilution for short-chain PFECAs (PFMOAA) was observed. The intake of PFOA in seafood may constitute a great threat to human health. More attention should be given to the impact of emerging hazardous PFAS on organisms for the health of ecosystems and human beings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2023.131353 | DOI Listing |
Environ Toxicol Chem
September 2025
Univ. Savoie Mont Blanc, CNRS. EDYTEM.
The environmental impact of Tire and Road Wear Particles (TRWP), arising from tire-road friction, has raised significant concerns. Like microplastics, TRWP contaminate air, water, and soil, with considerable annual emissions and runoff into freshwater ecosystems. Among TRWP compounds, 6PPD-Q, leached from tire particles, shows varying toxicity across species, notably affecting fish and invertebrates.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083 China.
Unlabelled: Marinisomatota (formerly recognized as Marinimicrobia, Marine Group A, and SAR406) are ubiquitous and abundant in marine environments, traditionally characterized as heterotrophic microorganisms. However, certain members of Marinisomatota have demonstrated the capacity to harness light for carbon dioxide fixation and the synthesis of organic compounds, thriving in the translucent zone or transitioning between the translucent and aphotic layers. The metabolic strategies driving the shift in trophic behaviors, and the factors influencing these transitions, remain largely unexplored.
View Article and Find Full Text PDFEcology
September 2025
Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, USA.
Recent evidence suggests that parasite-mediated reductions in food intake (i.e., anorexia) in herbivores can trigger trophic cascades that increase producer biomass.
View Article and Find Full Text PDFMar Pollut Bull
September 2025
Florida International University, Civil and Environmental Engineering, 10555 West Flagler Street, Engineering Center, Miami, Florida 33174, USA. Electronic address:
Marine ecosystems are increasingly threatened by anthropogenic pollutants, including plastics, persistent organic pollutants, heavy metals, oil, and emerging contaminants. This meta-analysis examined the accumulation patterns of five major contaminants-mercury (Hg), polychlorinated biphenyls (PCBs), microplastics, per- and polyfluoroalkyl substances (PFAS), and polycyclic aromatic hydrocarbons (PAHs)-in relation to trophic level and lifespan across marine species. Data synthesis revealed distinct differences in bioaccumulation and biomagnification between legacy and emerging contaminants.
View Article and Find Full Text PDFEcology
September 2025
U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, Pennsylvania, USA.
Invasive species are drivers of ecological change with the potential to reshape the structure and function of terrestrial and aquatic ecosystems. The invasive flathead catfish (Pylodictis olivaris) is an opportunistic predator that has established a rapidly growing population in the Susquehanna River, Pennsylvania, USA, since they were first detected in 2002. Although the predatory effects of invasive catfishes on native fish communities have been documented, the effects of invasion on riverine food webs are poorly understood.
View Article and Find Full Text PDF