Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Evidence shows that microwaves radiation may have various biological effects on central nervous system. Role of electromagnetic fields in neurodegenerative diseases, especially AD, has been widely studied, but results of these studies are inconsistent. Therefore, the above effects were verified again and the mechanism was preliminarily discussed.

Methods: Amyloid precursor protein (APP/PS1) and WT mice were exposed to long-term microwave radiation for 270 days (900 MHz, SAR: 0.25-1.055 W/kg, 2 h/day, alternately), and related indices were assessed at 90, 180 and 270 days. Cognition was evaluated by Morris water maze, Y maze and new object recognition tests. Congo red staining, immunohistochemistry and ELISA were used to analyze Aβ plaques, Aβ40 and Aβ42 content. Differentially expressed proteins in hippocampus between microwave-exposed and unexposed AD mice were identified by proteomics.

Results: Spatial and working memory was improved in AD mice after long-term 900 MHz microwave exposure compared with after sham exposure. Microwave radiation (900 MHz) for 180 or 270 days did not induce Aβ plaque formation in WT mice but inhibited Aβ accumulation in the cerebral cortex and hippocampus in 2- and 5-month-old APP/PS1 mice. This effect mainly occurred in the late stage of the disease and may have been attributed to downregulation of apolipoprotein family member and SNCA expression and excitatory/inhibitory neurotransmitter rebalance in the hippocampus.

Conclusions: The present results indicated that long-term microwave radiation can retard AD development and exert a beneficial effect against AD, suggesting that 900 MHz microwave exposure may be a potential therapy for AD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2023.03.083DOI Listing

Publication Analysis

Top Keywords

app/ps1 mice
12
microwave radiation
12
270 days
12
long-term microwave
8
180 270
8
900 mhz microwave
8
microwave exposure
8
mice
6
900 mhz
5
microwave
5

Similar Publications

Downregulation of Nrf2 deteriorates cognitive impairment in APP/PS1 mice by inhibiting mitochondrial biogenesis through the PPARγ/PGC1α signaling pathway.

Behav Brain Res

September 2025

Department of neurology, Hebei Medical University Third Hospital, Hebei 050000,Shijiazhuang,China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei 050000,Shijiazhuang,China. Electronic address:

Background: Mitochondrial dysfunction is considered to be an important pathogenesis of cognitive impairment in Alzheimer's disease(AD). Activation of Nrf2 can improve cognitive impairment in AD mice, but the underlying mechanism remains to be elucidated. This research aims to investigate the intrinsic molecular mechanism of Nrf2 in mitochondrial biogenesis related to cognitive impairment of AD mice.

View Article and Find Full Text PDF

Alzheimer's disease (AD), a leading cause of dementia, represents a critical unmet global medical need. While the precise mechanisms underlying AD pathogenesis remain elusive, increasing evidence underscores the pivotal role of neuroinflammation in driving cognitive impairment. N6-methyladenosine (m6A), an epigenetic modification regulating RNA metabolism, has been found to be dysregulated in AD.

View Article and Find Full Text PDF

Enriched Environment Alleviate AD Pathological Progression by Reducing Microglia Complement Signaling in Aged Male APP/PS1 Mice.

FASEB J

September 2025

Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China.

Alzheimer's disease (AD) is influenced by genetic and environmental factors. Previous studies showed that enriched environments improved memory and reduced amyloid plaques in AD mice, but the underlying mechanisms remain unclear. This study investigated the effects and mechanisms of enriched environments on AD pathology and cognitive function in aged APP/PS1 mice.

View Article and Find Full Text PDF

Enhancing microglial antioxidant capacity via the ascorbate transporter SVCT2 delays onset and modifies disease progression in mouse models of Alzheimer's disease.

Redox Biol

August 2025

i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal; Departamento de Biomedicina - Unidade de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, Porto, Portugal. Elec

Despite clear evidence that vitamin C levels are depleted in the brains of Alzheimer's disease (AD) patients, dietary supplementation has consistently failed in clinical trials, suggesting a critical bottleneck not in systemic supply, but in its transport into brain cells. Here, we identify this bottleneck as a progressive downregulation of the ascorbate transporter, Slc23a2, also known as SVCT2, in microglia. Then we hypothesized that bypassing this cellular deficiency via targeted SVCT2 overexpression in microglia could either prevent the onset of pathology or rescue established functional deficits.

View Article and Find Full Text PDF

Background: Amyloid β (Aβ) accumulation in the brains of patients with Alzheimer's disease (AD) contributes to cognitive impairment and neuronal damage. Urolithin A (UA), a gut microbiota-derived metabolite of ellagic acid, has been reported to cross the blood-brain barrier to exert anti-inflammatory and anti-oxidation effects in the brain. However, the molecular mechanisms of UA in AD were still unclear.

View Article and Find Full Text PDF