98%
921
2 minutes
20
The long acquisition time has limited the accessibility of magnetic resonance imaging (MRI) because it leads to patient discomfort and motion artifacts. Although several MRI techniques have been proposed to reduce the acquisition time, compressed sensing in magnetic resonance imaging (CS-MRI) enables fast acquisition without compromising SNR and resolution. However, existing CS-MRI methods suffer from the challenge of aliasing artifacts. This challenge results in the noise-like textures and missing the fine details, thus leading to unsatisfactory reconstruction performance. To tackle this challenge, we propose a hierarchical perception adversarial learning framework (HP-ALF). HP-ALF can perceive the image information in the hierarchical mechanism: image-level perception and patch-level perception. The former can reduce the visual perception difference in the entire image, and thus achieve aliasing artifact removal. The latter can reduce this difference in the regions of the image, and thus recover fine details. Specifically, HP-ALF achieves the hierarchical mechanism by utilizing multilevel perspective discrimination. This discrimination can provide the information from two perspectives (overall and regional) for adversarial learning. It also utilizes a global and local coherent discriminator to provide structure information to the generator during training. In addition, HP-ALF contains a context-aware learning block to effectively exploit the slice information between individual images for better reconstruction performance. The experiments validated on three datasets demonstrate the effectiveness of HP-ALF and its superiority to the comparative methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2023.3240862 | DOI Listing |
J Chem Phys
September 2025
Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, 5735 S. Ellis Ave., SCL 123, Chicago, Illinois 60637, USA.
Molecular dynamics simulations are essential for studying complex molecular systems, but their high computational cost limits scalability. Coarse-grained (CG) models reduce this cost by simplifying the system, yet traditional approaches often fail to maintain dynamic consistency, compromising their reliability in kinetics-driven processes. Here, we introduce an adversarial training framework that aligns CG trajectory ensembles with all-atom (AA) reference dynamics, ensuring both thermodynamic and kinetic fidelity.
View Article and Find Full Text PDFACS Omega
September 2025
Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
Dengue virus remains a significant global health threat, imposing a substantial disease burden on nearly half of the world's population. The urgent need for effective antiviral therapeutics, including therapeutic peptides targeting the Dengue virus, is critical in the current healthcare landscape. However, the availability of anti-Dengue peptides (ADPs) data remains limited in existing data sets, posing a challenge for computational modeling and discovery.
View Article and Find Full Text PDFBiomed Eng Lett
September 2025
Computer Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro. Nam-Gu, Pohang, Gyeongbuk 37673 Korea.
Generative models have become innovative tools across various domains, including neuroscience, where they enable the synthesis of realistic brain imaging data that captures complex anatomical and functional patterns. These models, such as Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), and diffusion models, leverage deep learning to generate high-quality brain images while maintaining biological and clinical relevance. These models address critical challenges in brain imaging, e.
View Article and Find Full Text PDFJ Eval Clin Pract
September 2025
Academic Unit of Population and Lifespan Sciences, School of Medicine, Nottingham City Hospital Campus, University of Nottingham, Clinical Sciences Building, Nottingham, UK.
Background: Artificial intelligence (AI) is increasingly applied across healthcare and public health, with evidence of benefits including enhanced diagnostics, predictive modelling, operational efficiency, medical education, and disease surveillance.However, potential harms - such as algorithmic bias, unsafe recommendations, misinformation, privacy risks, and sycophantic reinforcement - pose challenges to safe implementation.Far less attention has been directed to the public health threats posed by artificial general intelligence (AGI), a hypothetical form of AI with human-level or greater cognitive capacities.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
September 2025
Radiation Oncology, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143. Electronic address:
Purpose: Accelerating MR acquisition is essential for image guided therapeutic applications. Compressed sensing (CS) has been developed to minimize image artifacts in accelerated scans, but the required iterative reconstruction is computationally complex and difficult to generalize. Convolutional neural networks (CNNs)/Transformers-based deep learning (DL) methods emerged as a faster alternative but face challenges in modeling continuous k-space, a problem amplified with non-Cartesian sampling commonly used in accelerated acquisition.
View Article and Find Full Text PDF