Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cucumber is one of the most important vegetables, and nitrogen is essential for the growth and fruit production of cucumbers. It is crucial to develop cultivars with nitrogen limitation tolerance or high nitrogen efficiency for green and efficient development in cucumber industry. To reveal the genetic basis of cucumber response to nitrogen starvation, a genome-wide association study (GWAS) was conducted on a collection of a genetically diverse population of cucumber ( L.) comprising 88 inbred and DH accessions including the North China type, the Eurasian type, the Japanese and South China type mixed subtype, and the South China type subtype. Phenotypic evaluation of six traits under control (14 mM) and treatment (3.5 mM) N conditions depicted the presence of broad natural variation in the studied population. The GWAS results showed that there were significant differences in the population for nitrogen limitation treatment. Nine significant loci were identified corresponding to six LD blocks, three of which overlapped. Sixteen genes were selected by GO annotation associated with nitrogen. Five low-nitrogen stress tolerance genes were finally identified by gene haplotype analysis: CsaV3_3G003630 (CsNRPD1), CsaV3_3G002970 (CsNRT1.1), CsaV3_4G030260 (CsSnRK2.5), CsaV3_4G026940, and CsaV3_3G011820 (CsNPF5.2). Taken together, the experimental data and identification of candidate genes presented in this study offer valuable insights and serve as a useful reference for the genetic enhancement of nitrogen limitation tolerance in cucumbers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048605PMC
http://dx.doi.org/10.3390/genes14030662DOI Listing

Publication Analysis

Top Keywords

nitrogen limitation
12
china type
12
genome-wide association
8
association study
8
candidate genes
8
limitation tolerance
8
south china
8
nitrogen
7
cucumber
5
study identify
4

Similar Publications

Mercury(II) ions (Hg) are one of the most common and highly toxic heavy metal ions, which can contaminate the environment and damage the human health. Therefore, the precise detection of trace Hg concentration is particularly important. Herein, gold nanoparticles-enhanced silver-coated hollow fiber (HF) surface plasmon resonance (SPR) sensor was developed for the highly sensitive detection of Hg ions.

View Article and Find Full Text PDF

Developing efficient, low-cost catalysts for oxygen reduction and evolution reactions (ORR and OER) is key to advancing metal-air batteries and regenerative fuel cells. In this study, nitrogen-doped binary metal (Mn and Ni) oxides (N-BMOs) and Pt-decorated N-BMOs were synthesised using three methods and tested as ORR and OER catalysts in alkaline media. Their physicochemical properties were characterised by XRD, N-sorption, TEM, and XPS, while their electrochemical performance was evaluated using voltammetry and impedance spectroscopy.

View Article and Find Full Text PDF

Antiferroelectric SnO Network with Amorphous Surface for Electrochemical N Fixation.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Bioinspired Interfacial Materials Science, Bioinspired Science Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China.

Electrochemical nitrogen fixation-a sustainable pathway for converting abundant N into NH using renewable energy-holds transformative potential for revolutionizing artificial nitrogen cycles. Nevertheless, even the state-of-the-art catalytic systems also suffer from inadequate N adsorption capacity, which critically limits ammonia production rates and Faradaic efficiency (FE). To overcome this bottleneck, we strategically leveraged the antiferroelectric properties of SnO to establish dipole-dipole interactions with N molecules, synergistically enhancing both N adsorption and activation kinetics.

View Article and Find Full Text PDF

Dual-responsive fluorescent sensors for the detection and discrimination of sulphur and nitrogen mustards.

Analyst

September 2025

Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.

Mustard agents, including sulphur mustard (SM) and nitrogen mustard (NM), are chemical warfare agents that can cause blistering of the skin and mucous membranes upon contact. Although SM and NM both have dermal effects, their medical management of systemic poisoning differs significantly. A rapid and simple method for detecting and discriminating between SM and NM would be greatly valuable.

View Article and Find Full Text PDF

Unveiling the effect of Fe(III) and sulfate on ammonium oxidation under anaerobic condition: interactions and extracellular electron transfer.

Water Res

August 2025

Guangzhou Landscape Architecture Group Co., Ltd., Guangzhou 510000, PR China; Guangzhou Municipal Construction Group Co., Ltd., Guangzhou 510030, PR China.

Enhanced ammonium (10.6 - 14.7%) and total inorganic nitrogen (TIN, 4.

View Article and Find Full Text PDF