98%
921
2 minutes
20
The self-assembly mechanism of alternating AlN/TiN nano-lamellar structures in AlTiN coating is still a mystery, though this coating has been widely used in industry. Here, by using the phase-field crystal method, we studied the atomic-scale mechanisms of the formation of nano-lamellar structures during spinodal decomposition transformation of an AlTiN coating. The results show that the formation of a lamella is characterized by four distinct stages including the generation of dislocations (stage I), formation of islands (stage II), merging of islands (stage III), and flattening of lamellae (stage IV). The locally periodic fluctuation of the concentration along the lamella leads to the generation of periodically distributed misfit dislocations and then AlN/TiN islands, while the fluctuation of the composition in the direction normal to the lamella is responsible for the merging of islands and flattening of a lamella and more importantly the cooperative growth between neighboring lamellae. Moreover, we found that misfit dislocations play a crucial role in all the four stages, promoting the cooperative growth of TiN and AlN lamellae. Our results demonstrate that the TiN and AlN lamellae could be produced through the cooperative growth of AlN/TiN lamellae in spinodal decomposition of the AlTiN phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c22516 | DOI Listing |
J Chem Phys
September 2025
School of Mathematical and Physical Sciences, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, United Kingdom.
The development of the microstructure during polymeric spinodal decomposition can be monitored in real time using small-angle scattering. Information about the microstructure can be deduced from measurements of the structure factor-a quantity directly proportional to the scattered intensity. While the time evolution of the structure factor can be measured relatively easily, modeling it has proved to be much more difficult.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Department of Physics and Astronomy and Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
Polymer dynamics is analyzed through the lens of linear dimensionality reduction methods, in particular principal and time-lagged independent component analysis (tICA). For a polymer undergoing ideal Rouse dynamics, the slow modes identified by these transformations coincide with the conventional Rouse modes. When applied to the Fourier modes of the segment density, we show that tICA generates dynamics equivalent to dynamic self-consistent field theory (D-SCFT) with a wavevector-dependent Onsager coefficient and a free energy functional subject to the random phase approximation.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Sustainable Process Engineering, Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
Solventless fed-batch experiments at elevated pressures were performed to gain insights into the performance of triethylamine as an extraction base during the direct hydrogenation of CO to formic acid. No formic acid was observed in the bulk liquid after several hours of reaction using an Au/TiO catalyst. Analysis on the spent catalyst revealed significant formic acid build-up within the catalyst pores.
View Article and Find Full Text PDFNanomaterials (Basel)
August 2025
Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea.
This study investigates the influence of Cu addition on the nanostructural evolution and mechanical performance of a heavily drawn non-equiatomic CoCuFeMnNi high-entropy alloy (HEA) wire. Through systematic microstructural and compositional analysis, we examine how Cu constituent affects phase separation behavior and promotes deformation-induced nano-twinning in another phase counterpart. The designed HEA wire exhibits an elongated ultrafine dual face-centered cubic (fcc) lamella structure (i.
View Article and Find Full Text PDFPhys Rev E
July 2025
Indian Institute of Science, Department of Physics, C. V. Raman Ave, Bengaluru 560012, India.
Two-temperature induced phase separation (2-TIPS) is a phenomenon observed in mixtures of active and passive particles modeled by scalar activity where the temperature of the particle is proportional to its activity. The binary mixture of "hot" and "cold" particles phase separates when the relative temperature difference between hot and cold particles, defined as activity χ, exceeds a density-dependent critical value. The study of kinetics in 2-TIPS, a nonequilibrium phase separation, is of fundamental importance in statistical physics.
View Article and Find Full Text PDF