Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Polymer dynamics is analyzed through the lens of linear dimensionality reduction methods, in particular principal and time-lagged independent component analysis (tICA). For a polymer undergoing ideal Rouse dynamics, the slow modes identified by these transformations coincide with the conventional Rouse modes. When applied to the Fourier modes of the segment density, we show that tICA generates dynamics equivalent to dynamic self-consistent field theory (D-SCFT) with a wavevector-dependent Onsager coefficient and a free energy functional subject to the random phase approximation. We then introduce a hidden variable method and a time-local approach to include temporal memory in the tICA-generated dynamics and generalize it to construct continuum models for the nonequilibrium case of spinodal decomposition of a symmetric diblock copolymer melt.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0289397 | DOI Listing |