Interaction of an anticancer benzopyrane derivative with DNA: Biophysical, biochemical, and molecular modeling studies.

Biochim Biophys Acta Gen Subj

College of Pharmacy, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.

Published: June 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: SIMR1281 is a potent anticancer lead candidate with multi- target activity against several proteins; however, its mechanism of action at the molecular level is not fully understood. Revealing the mechanism and the origin of multitarget activity is important for the rational identification and optimization of multitarget drugs.

Methods: We have used a variety of biophysical (circular dichroism, isothermal titration calorimetry, viscosity, and UV DNA melting), biochemical (topoisomerase I & II assays) and computational (molecular docking and MD simulations) methods to study the interaction of SIMR1281 with duplex DNA structures.

Results: The biophysical results revealed that SIMR1281 binds to dsDNA via an intercalation-binding mode with an average binding constant of 3.1 × 10 M. This binding mode was confirmed by the topoisomerases' inhibition assays and molecular modeling simulations, which showed the intercalation of the benzopyrane moiety between DNA base pairs, while the remaining moieties (thiazole and phenyl rings) sit in the minor groove and interact with the flanking base pairs adjacent to the intercalation site.

Conclusions: The DNA binding characteristics of SIMR1281, which can disrupt/inhibit DNA function as confirmed by the topoisomerases' inhibition assays, indicate that the observed multi-target activity might originate from ligand intervention at nucleic acids level rather than due to direct interactions with multiple biological targets at the protein level.

General Significance: The findings of this study could be helpful to guide future optimization of benzopyrane-based ligands for therapeutic purposes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2023.130347DOI Listing

Publication Analysis

Top Keywords

molecular modeling
8
confirmed topoisomerases'
8
topoisomerases' inhibition
8
inhibition assays
8
base pairs
8
dna
6
interaction anticancer
4
anticancer benzopyrane
4
benzopyrane derivative
4
derivative dna
4

Similar Publications

Background: The aim of this study was to establish a rat model of premature ovarian failure (POF) with cyclophosphamide (CTX), and explore the molecular basis of POF and the mechanism of Guishen-Erxian Decoction (GSEXD) to improve POF from the perspective of oxidative stress regulation of ovarian granulosa cell (OGC) DNA fragmentation.

Method: The study utilized SD rats to establish a POF model via CTX. Rats were divided into Control, POF group, three GSEXD dosage groups (low, medium, high), and a GSEXD+PI3K agonist group to assess GSEXD's therapeutic effects on oxidative stress, DNA fragmentation and ovarian damage.

View Article and Find Full Text PDF

Modulating Placental Functionality in Preeclampsia With siRNA Nanocomplexes.

Hypertension

September 2025

Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu (Z.W.).

Background: Early-onset preeclampsia poses significant risks to maternal and fetal health, necessitating a deeper understanding of its molecular mechanisms and effective therapeutic strategies.

Methods: Utilizing data from genome-wide association study and Mendelian randomization analysis, we investigated the relationship between mitochondrial DNA copy number and preeclampsia. Transcriptome sequencing, in vitro experiments, and animal studies were conducted to explore the roles of SENP3 and SETD7 in preeclampsia pathogenesis.

View Article and Find Full Text PDF

The discovery of solute precursors of crystalline materials, such as biominerals, recently challenged the classical nucleation theory (CNT). One emerging method for investigating these early-stage intermediates in solution is dissolution dynamic nuclear polarization (dDNP)-enhanced nuclear magnetic resonance (NMR) spectroscopy. Recent applications of dDNP to calcium carbonate (CaC) and calcium phosphate (CaP) mineralization have demonstrated the feasibility of identifying and tracing very early-stage prenucleation clusters (PNCs).

View Article and Find Full Text PDF

Background: Superficial injection of hyaluronic acid (HA)-based gels is a widely used method to restore skin quality and achieve a more youthful appearance. While the clinical benefits of such procedures are well established, their biological mechanisms of action remain poorly understood.

Objective: This study aimed to evaluate the effectiveness of two cross-linked HA gels (IPN-12.

View Article and Find Full Text PDF

PACAP versus CGRP in migraine: From mouse models to clinical translation.

Cephalalgia

September 2025

Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.

Migraine is a complex neurological disorder involving multiple neuropeptides that modulate nociceptive and sensory pathways. The most studied peptide is calcitonin gene-related peptide (CGRP), which is a well-established migraine trigger and therapeutic target. Recently, another peptide, pituitary adenylate cyclase-activating polypeptide (PACAP), has emerged as an alternative target for migraine therapeutics.

View Article and Find Full Text PDF