Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is currently the gold-standard technique for detecting and quantifying messenger RNA. However, without proper validation, the method may produce artefactual and non-reproducible cycle threshold values generating poor-quality data. The newer droplet digital PCR (ddPCR) method allows for the absolute quantification of targeted nucleic acids providing more sensitive and accurate measurements without requiring external standards. This study compared these two PCR-based methods to measure the expression of well-documented genes used in ecotoxicology studies. We exposed Mediterranean mussels (Mytilus galloprovincialis) to copper and analyzed gene expression in gills and digestive glands using RT-qPCR and ddPCR assays. A step-by-step methodology to optimize and compare the two technologies is described. After ten-fold serial complementary DNA dilution, both RT-qPCR and ddPCR exhibited comparable linearity and efficiency and produced statistically similar results. We conclude that ddPCR is a suitable method to assess gene expression in an ecotoxicological context. However, RT-qPCR has a shorter processing time and remains more cost-effective.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2023.114829DOI Listing

Publication Analysis

Top Keywords

droplet digital
8
digital pcr
8
reverse transcription-quantitative
8
methods measure
8
gene expression
8
rt-qpcr ddpcr
8
comparison droplet
4
pcr reverse
4
transcription-quantitative pcr
4
pcr methods
4

Similar Publications

Background: The expression and clinical correlation of BRAFV600E mutation and programmed cell death-1 ligand 1 (PD-L1) in children with Langerhans cell histiocytosis (LCH) have been reported, but the conclusions of previous studies are inconsistent. In addition, it has been reported that elevated cathepsin S (CTSS) expression is associated with various cancers. However, there is currently no research on the correlation between CTSS and LCH.

View Article and Find Full Text PDF

Application of droplet digital PCR for the detection of fish DNA in food products.

Food Res Int

November 2025

Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy. Electronic address:

Fish is one of the most common causes of food allergy. The global prevalence of fish allergy has increased over the years as a result of the increased fish consumption. In allergic individuals even small amounts of allergen can trigger a life-threatening allergic reaction.

View Article and Find Full Text PDF

Background: Regulatory T cells (Tregs) are found to be critical for maintaining immune tolerance to self-antigens; however, their status in primary Sjögren's syndrome (pSS) remains unclear. We investigated alterations in the abundance of peripheral Tregs in a large pSS cohort and their implications for patients.

Methods: Levels of CD4+CD25+FOXP3+Treg cells in the peripheral blood of 624 patients with pSS, and 93 healthy controls (HCs) were detected using modified flow cytometry (FCM).

View Article and Find Full Text PDF

Quantitative diagnostic method to detect Gardnerella vaginalis by droplet digital PCR.

Pract Lab Med

September 2025

Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.

Background: Nucleic Acid Amplification Tests (NAAT) remain one of the most reliable methods for pathogen identification. Given the high false-negative rates associated with traditional staining and microscopic examination, the time-consuming nature and low sensitivity of bacterial culture methods, as well as the inability of conventional NAAT to achieve absolute quantification.

Methods: To achieve rapid and quantitative detection of , we selected the 23S rRNA gene as the target for identification and developed a droplet digital PCR detection method.

View Article and Find Full Text PDF

Donor-derived cell-free DNA (dd-cfDNA) has emerged as a valuable noninvasive biomarker for detecting allograft injury in solid organ transplantation. It is released into the bloodstream from the transplanted organ as a result of cell injury and immune activation, with baseline levels influenced by organ type, tissue turnover, and posttransplant physiological changes. Several analytical platforms are available, including quantitative polymerase chain reaction (PCR), digital droplet PCR, and next-generation sequencing, each differing in sensitivity, throughput, and reporting format.

View Article and Find Full Text PDF