Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Extracorporeal blood purification systems represent a promising alternative for treatment of blood stream infections with multiresistant bacteria.

Objectives: The aim of this study was to analyse the binding activity of S. aureus to Seraph affinity filters based on heparin coated beads and to identify effectors influencing this binding activity.

Results: To test the binding activity, we used gfp-expressing S. aureus Newman strains inoculated either in 0.9% NaCl or in blood plasma and determined the number of unbound bacteria by FACS analyses after passing through Seraph affinity filters. The binding activity of S. aureus was clearly impaired in human plasma: while a percent removal of 42% was observed in 0.9% NaCl (p-value 0.0472) using Seraph mini columns, a percent removal of only 10% was achieved in human plasma (p-value 0.0934). The different composition of surface proteins in S. aureus caused by the loss of SarA, SigB, Lgt, and SaeS had no significant influence on its binding activity. In a clinically relevant approach using the Seraph® 100 Microbind® Affinity Filter and 1000 ml of human blood plasma from four different donors, the duration of treatment was shown to have a critical effect on the rate of bacterial reduction. Within the first four hours, the number of bacteria decreased continuously and the reduction in bacteria reached statistical significance after two hours of treatment (percentage reduction 64%, p-value 0.01165). The final reduction after four hours of treatment was close to 90% and is dependent on donor. The capacity of Seraph® 100 for S. aureus in human plasma was approximately 5 x 108 cells.

Conclusions: The Seraph affinity filter, based on heparin-coated beads, is a highly efficient method for reducing S. aureus in human blood plasma, with efficiency dependent on blood plasma composition and treatment duration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10022791PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0283304PLOS

Publication Analysis

Top Keywords

binding activity
16
blood plasma
16
seraph® 100
12
affinity filter
12
seraph affinity
12
human plasma
12
100 microbind®
8
microbind® affinity
8
treatment duration
8
activity aureus
8

Similar Publications

Discovery of -(thiazol-2-yl) Furanamide Derivatives as Potent Orally Efficacious AR Antagonists with Low BBB Permeability.

J Med Chem

September 2025

State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.

Resistance-conferring mutations in the androgen receptor (AR) ligand-binding pocket (LBP) compromise the effectiveness of clinically approved orthosteric AR antagonists. Targeting the dimerization interface pocket (DIP) of AR presents a promising therapeutic approach. In this study, we report the design and optimization of -(thiazol-2-yl) furanamide derivatives as novel AR DIP antagonists, among which was the most promising candidate.

View Article and Find Full Text PDF

The synthesis of -tetrakis(3,4,5-trimethoxyphenyl)porphyrin [HT(3,4,5-OCH)PP] and cobalt(II) -tetrakis(3,4,5-trimethoxyphenyl)porphyrin [Co(T(3,4,5-OCH)PP)] has been successfully accomplished. The oxidation properties of [Co(T(3,4,5-OCH)PP)] have been assessed through UV-vis, NMR, and EPR techniques. It can be seen in the UV-vis spectrum that adding SbCl caused extra peaks to appear at 674 nm, which means that a π-cation radical was formed.

View Article and Find Full Text PDF

β-Adrenergic Receptors - Not Always Outside-In.

Physiology (Bethesda)

September 2025

Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA 94304.

Canonical activation of G-protein coupled receptors (GPCRs) by hormone binding occurs at the plasma membrane, resulting in the diffusion of second messengers to intracellular effector sites throughout the cell. In contrast, recent evidence suggests that functional GPCRs can induce signaling from distinct intracellular domains, contributing to specificity in signaling. Functional adrenergic receptors have been identified at intracellular sites in the cardiac myocyte such as endosomes, the sarcoplasmic reticulum, the Golgi and the inner nuclear membrane.

View Article and Find Full Text PDF

Integrins bind ligands between their alpha (α) and beta (β) subunits and transmit signals through conformational changes. Early in chordate evolution, some α subunits acquired an "inserted" (I) domain that expanded integrin's ligand-binding repertoire but obstructed the ancestral ligand pocket, seemingly blocking conventional integrin activation. Here, we compare cryo-electron microscopy structures of apo and ligand-bound states of the I domain-containing αEβ integrin and the I domain-lacking αβ integrin to illuminate how the I domain intrinsically mimics an extrinsic ligand to preserve integrin function.

View Article and Find Full Text PDF

Locusts adopt IP as a second messenger for olfactory signal transduction.

Sci Adv

September 2025

State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China.

Insects, unlike vertebrates, use heteromeric complexes of odorant receptors and co-receptors for olfactory signal transduction. However, the secondary messengers involved in this process are largely unknown. Here, we use the olfactory signal transduction of the aggregation pheromone 4-vinylanisole (4VA) as a model to address this question.

View Article and Find Full Text PDF