98%
921
2 minutes
20
Background: Increased data availability has prompted the creation of clinical decision support systems. These systems utilise clinical information to enhance health care provision, both to predict the likelihood of specific clinical outcomes or evaluate the risk of further complications. However, their adoption remains low due to concerns regarding the quality of recommendations, and a lack of clarity on how results are best obtained and presented.
Methods: We used autoencoders capable of reducing the dimensionality of complex datasets in order to produce a 2D representation denoted as latent space to support understanding of complex clinical data. In this output, meaningful representations of individual patient profiles are spatially mapped in an unsupervised manner according to their input clinical parameters. This technique was then applied to a large real-world clinical dataset of over 12,000 patients with an illness compatible with dengue infection in Ho Chi Minh City, Vietnam between 1999 and 2021. Dengue is a systemic viral disease which exerts significant health and economic burden worldwide, and up to 5% of hospitalised patients develop life-threatening complications.
Results: The latent space produced by the selected autoencoder aligns with established clinical characteristics exhibited by patients with dengue infection, as well as features of disease progression. Similar clinical phenotypes are represented close to each other in the latent space and clustered according to outcomes broadly described by the World Health Organisation dengue guidelines. Balancing distance metrics and density metrics produced results covering most of the latent space, and improved visualisation whilst preserving utility, with similar patients grouped closer together. In this case, this balance is achieved by using the sigmoid activation function and one hidden layer with three neurons, in addition to the latent dimension layer, which produces the output (Pearson, 0.840; Spearman, 0.830; Procrustes, 0.301; GMM 0.321).
Conclusion: This study demonstrates that when adequately configured, autoencoders can produce two-dimensional representations of a complex dataset that conserve the distance relationship between points. The output visualisation groups patients with clinically relevant features closely together and inherently supports user interpretability. Work is underway to incorporate these findings into an electronic clinical decision support system to guide individual patient management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992802 | PMC |
http://dx.doi.org/10.3389/fdgth.2023.1057467 | DOI Listing |
Development
September 2025
Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA.
Organ initiation is often driven by extracellular signaling molecules that activate precursor cells competent to receive and respond to a given signal, yet little is known about the dynamics of competency in space and time during development. Teeth are excellent organs to study cellular competency because they can be activated with the addition of a single signaling ligand, Ectodysplasin (Eda). To investigate the role of Eda in tooth specification, we generated transgenic sticklebacks and zebrafish with heat shock-inducible Eda overexpression.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
September 2025
This article proposes a novel model-based planning framework for freeway ramp metering (RM), denoted as Koopman-driven linearized model-based offline planning (KLMOP). This framework integrates the model predictive control (MPC) and offline reinforcement learning (RL) under assumptions of a linear Markov decision process (MDP) with the Koopman operator. KLMOP introduces a fully linearized control framework by learning and modeling the dynamics, reward function, and value function in a latent space through a Koopman-based latent dynamical model (KLDM) and a pessimistic value iteration (PEVI) algorithm.
View Article and Find Full Text PDFFront Digit Health
August 2025
Architecture Laboratory, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.
Background: Microwave Doppler sensors, capable of detecting minute physiological movements, enable the measurement of biometric information, such as walking patterns, heart rate, and respiration. Unlike fingerprint and facial recognition systems, they offer authentication without physical contact or privacy concerns. This study focuses on non-contact seismocardiography using microwave Doppler sensors and aims to apply this technology for biometric authentication.
View Article and Find Full Text PDFImaging Neurosci (Camb)
September 2025
Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, United States.
Spatial similarity of functional connectivity profiles across matching anatomical locations in individuals is often calculated to delineate individual differences in functional networks. Likewise, spatial similarity is assessed across average functional connectivity profiles of groups to evaluate the maturity of functional networks during development. Despite its widespread use, spatial similarity is limited to comparing two samples at a time.
View Article and Find Full Text PDFNeuroimage Rep
September 2025
Arizona State University, Tempe, AZ, 85287, USA.
Non-intrusive neuroimaging technology offers fast and robust diagnostic tools for neuro-disorder disease diagnosis, such as Attention-Deficit/Hyperactivity Disorder (ADHD). Resting-state functional magnetic imaging (rs-fMRI) has been demonstrated to have great potential for such applications due to its unique capability and convenience in providing spatial-temporal brain imaging. One critical challenge of using rs-fMRI data is the high dimensionality for both spatial and temporal domains.
View Article and Find Full Text PDF