98%
921
2 minutes
20
The pH values of pore solutions are of great significance for the durability of concrete, but the influencing factors and mechanisms of geopolymer pore solutions are still unclear and the composition of raw material elements has a great influence on the geological polymerization behavior of geopolymers. Therefore, we prepared geopolymers with different Al/Na and Si/Na molar ratios using metakaolin, and the pH and compressive strength values of the pore solutions were determined using solid-liquid extraction. Finally, the influencing mechanisms of sodium silica on the alkalinity and geological polymerization behavior of geopolymer pore solutions were also analyzed. The results showed that the pH values of the pore solutions decreased with an increase in the Al/Na ratio and increased with an increase in the Si/Na ratio. The compressive strength of the geopolymers first increased and then decreased with an increase in the Al/Na ratio and decreased with an increase in the Si/Na ratio. The exothermic rates of the geopolymers first increased and then slowed down with an increase in the Al/Na ratio, indicating that the reaction levels first increased and then decreased with an increase in the Al/Na ratio. The exothermic rates of the geopolymers gradually slowed down with an increase in the Si/Na ratio, indicating that an increase in the Si/Na ratio reduced the reaction levels. In addition, the results obtained from SEM, MIP, XRD and other test methods were consistent with the pH change laws of geopolymer pore solutions, i.e., the higher the reaction level, the denser the microstructure and the smaller the porosity, whereas the larger the pore size, the smaller the pH value of the pore solution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10003817 | PMC |
http://dx.doi.org/10.3390/ma16051929 | DOI Listing |
Biotechnol Bioeng
September 2025
Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA.
In this work, confocal microscopy is employed to study the loading and fouling behavior in AAV affinity resins as well as the implications of resin reuse with several commercial chromatographic materials and feed mixtures. Resin samples are obtained from both batch and column experiments, and confocal microscopy is carried out to examine the adsorption profiles in the beads after loading, wash, elution, and CIP steps. A comparison of PSDVB-based POROS CaptureSelect (PCS) AAV resins with agarose-based AVIPure AAV9 resins revealed distinct differences in both AAV transport and resin fouling.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.. Electronic address:
This study presents a straightforward and rapid method for preparing graphene aerogel by integrating a sodium alginate (SA)-metal ion crosslinking system, a bubble template, and an osmotic dehydration process. Graphene oxide (GO) nanosheets were dispersed into the solution crosslinked by SA and metal ions, leading to rapid gelation of GO under ambient conditions. To minimize structural damage to the porous network caused by water molecules during the drying process, an osmotic dehydration technique was employed as an auxiliary drying method.
View Article and Find Full Text PDFLangmuir
September 2025
Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China.
Surfactant-enhanced spontaneous imbibition is a proven method of enhancing oil recovery from shale reservoirs. However, a significant knowledge gap concerning the impact of clay minerals on surfactant-enhanced imbibition in shale reservoirs remains. Therefore, this study first analyzed the mineral composition and pore structure of the shale reservoirs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
DUT School of Software Technology & DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian 116620, China.
Achieving both high sensitivity and a wide detection range in flexible pressure sensors poses a challenge due to their inherent trade-off. Although porous structures offer promising solutions, conventional methods (templating, foaming, and freeze-drying) fail to precisely control cavity dimensions, spatial arrangement, and 3D morphology, which are crucial for sensing performance. Here, we propose a scalable fabrication strategy that integrates triply periodic minimal surface (TPMS) geometries─precisely engineered via FDM 3D printing─with ultrasonic impregnation of carbon black (CB) into TPU scaffolds.
View Article and Find Full Text PDFRSC Adv
August 2025
Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos" Agia Paraskevi 15341 Greece.
In this study, porous polysiloxane (PS)/multi-walled carbon nanotube (MWCNT) nanocomposite films were developed as high-performance triboelectric layers for flexible triboelectric nanogenerators (TENGs). TENGs convert mechanical motion into electricity and offer a promising solution for self-powered electronic systems. The nanocomposites were fabricated using a doctor blading method, and porosity was introduced a simple, scalable salt-leaching technique.
View Article and Find Full Text PDF