98%
921
2 minutes
20
The dynamic behaviors of brain glial cells in various neuroinflammatory conditions and neurological disorders have been reported; however, little is known about the underlying intracellular signaling pathways. Here, we developed a multiplexed kinome-wide siRNA screen to identify the kinases regulating several inflammatory phenotypes of mouse glial cells in culture, including inflammatory activation, migration, and phagocytosis of glia. Subsequent proof-of-concept experiments involving genetic and pharmacological inhibitions indicated the importance of T-cell receptor signaling components in microglial activation and a metabolic shift from glycolysis to oxidative phosphorylation in astrocyte migration. This time- and cost-effective multiplexed kinome siRNA screen efficiently provides exploitable drug targets and novel insight into the mechanisms underlying the phenotypic regulation of glial cells and neuroinflammation. Moreover, the kinases identified in this screen may be relevant in other inflammatory diseases and cancer, wherein kinases play a critical role in disease signaling pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9990460 | PMC |
http://dx.doi.org/10.26508/lsa.202201605 | DOI Listing |
Microbes Infect
September 2025
Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China. Electronic address:
Background: While autophagy is pivotal in antimicrobial defense, its regulatory role in Talaromyces marneffei (TM) infected bronchial epithelium remains elusive.
Objective: To elucidate the impact of TM infection on autophagy in bronchial epithelial cells and to identify the key molecular regulators involved in this process.
Methods: Primary computational screening identified core autophagy modulators.
Cell Signal
September 2025
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.. Electronic address:
Nonalcoholic fatty liver disease (NAFLD) is a common metabolic disease of the liver that can progress to hepatitis, cirrhosis, and even cancer in extreme cases. In this study, we investigated the effect of Melatonin (Mel) on lipid accumulation and explored the molecular mechanism behind it. Mel treatment reduced lipid accumulation and enhanced autophagy in oleic acid (OA) + palmitic acid (PA)-induced cells.
View Article and Find Full Text PDFJ Transl Med
September 2025
Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.
Background: Pulmonary fibrosis (PF) is a progressive interstitial lung disease marked by extracellular matrix accumulation and epithelial damage, with limited therapeutic options. Alveolar epithelial cell apoptosis is a key pathological hallmark of PF, but the upstream regulators driving this process remain unclear. Caspase-9, a central initiator of the intrinsic apoptotic pathway, has been implicated in fibrotic diseases across multiple organs.
View Article and Find Full Text PDFMol Ther Oncol
September 2025
Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.
Colorectal cancer (CRC) remains a leading cause of cancer mortality worldwide, with chromosome instability (CIN) present in approximately 85% of cases and associated with poor prognosis. Reduced expression of , a component of the SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase complex, occurs in about one-third of CRCs and correlates with CIN, positioning as a potential therapeutic target. This study employed bioinformatics analyses, small interfering RNA (siRNA) screening, small molecule inhibition, and quantitative imaging (QuantIM) microscopy to identify synthetic lethal interactors of .
View Article and Find Full Text PDFMater Today Bio
October 2025
Department of Thoracic Surgery, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, PR China.
In addition to early diagnosis and on-time treatment, the adoption of new therapeutic strategies is of great significance for improving the clinical outcomes of patients with esophageal cancer. Although emerging therapies such as photothermal and photodynamic therapy (PDT) can precisely eliminate cancer cells and are alternative strategies to conventional treatments, hypoxia status of solid tumors have hindered their application. In recent years, nanoplatforms have been developed to address these limitations and improve the efficacy and safety of treatments.
View Article and Find Full Text PDF