Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Colorectal cancer (CRC) remains a leading cause of cancer mortality worldwide, with chromosome instability (CIN) present in approximately 85% of cases and associated with poor prognosis. Reduced expression of , a component of the SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase complex, occurs in about one-third of CRCs and correlates with CIN, positioning as a potential therapeutic target. This study employed bioinformatics analyses, small interfering RNA (siRNA) screening, small molecule inhibition, and quantitative imaging (QuantIM) microscopy to identify synthetic lethal interactors of . Shallow deletions of in CRC patient samples was found to associate with decreased gene expression and adverse clinical outcomes. Targeted silencing or pharmacological inhibition of CHEK1 using Prexasertib significantly reduced proliferation in -deficient cells. Mechanistic studies revealed that Prexasertib treatment increased DNA double-strand breaks and apoptosis specifically in -deficient cells. Furthermore, combining Prexasertib with 5-fluorouracil, a standard chemotherapeutic agent, produced a synergistic killing effect. These findings establish a novel synthetic lethal relationship between and , suggesting that CHEK1 inhibition may provide a targeted therapeutic strategy for CRC patients with deficiencies, and highlighting the broader potential of exploiting SCF complex alterations in CRC therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12390932PMC
http://dx.doi.org/10.1016/j.omton.2025.201028DOI Listing

Publication Analysis

Top Keywords

synthetic lethal
12
-deficient cells
8
lethal interactor
4
interactor colonic
4
colonic epithelial
4
epithelial cells
4
cells colorectal
4
colorectal cancer
4
crc
4
cancer crc
4

Similar Publications

African swine fever virus (ASFV) is a large DNA virus that causes a highly lethal disease in pigs and currently has no effective vaccines or antiviral treatments available. We designed a protein switch that combines the DNase domain of colicin E9 (DNase E9) and its inhibitor Im9 with the viral protease cleavage site. The complex is only destroyed in the presence of an ASFV pS273R protease, which releases DNase activity.

View Article and Find Full Text PDF

Targeted degradation of Werner syndrome helicase (WRN) via ligand-directed covalent hydrophobic tagging.

Eur J Med Chem

September 2025

State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China. Electronic address:

The Werner syndrome RecQ helicase (WRN) has recently emerged as a novel synthetic lethality target for microsatellite instability-high (MSI-H) cancers. However, available WRN inhibitors or degraders is still lacking so far. Particularly, chemically designed probes capable of degrading WRN irrespective of microsatellite status remain unexplored.

View Article and Find Full Text PDF

The Discovery of RP-2119: A Potent, Selective, and Orally Bioavailable Polθ ATPase Inhibitor.

J Med Chem

September 2025

Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9 Montréal, Québec, Canada.

DNA polymerase theta (Polθ) plays a critical role in repairing DNA double-strand breaks through microhomology-mediated end joining (MMEJ) and has emerged as a key synthetic lethal drug target in cancers with homologous recombination (HR) deficiencies. Its inhibition has shown a strong potential to synergize with PARP inhibitors, particularly in tumors with deleterious or mutations. Here, we describe the discovery and preclinical development of RP-2119, a selective, potent, and bioavailable Polθ ATPase inhibitor.

View Article and Find Full Text PDF

Noncompetitive Inhibition of DNA Polymerase β by a Nonnative Nucleotide.

J Org Chem

September 2025

Johns Hopkins University, Department of Chemistry, 3400 N. Charles St., Baltimore, Maryland 21218, United States.

Base excision repair (BER) is a DNA repair pathway responsible for protecting the genome against modified nucleotides. DNA polymerase β (Pol β) participates in this process by removing the remnants of a damaged nucleotide and filling in the resulting gap. Pol β is overexpressed in some cancers and is synthetic lethal in cells deficient in BRCA1/2, providing additional impetus for identifying inhibitors of this enzyme.

View Article and Find Full Text PDF

Cancer is a complex and heterogeneous disease characterized by the accumulation of genetic and epigenetic alterations that drive uncontrolled cellular proliferation and survival. This review provides a comprehensive overview of key cancer driver genes, including oncogenes such as KRAS and PIK3CA, as well as tumor suppressor genes like TP53, PTEN, and CDKN2A, highlighting their molecular mechanisms and roles across various types of cancer. Leveraging insights from large-scale cancer genome initiatives and whole-genome sequencing, we examine the landscape of somatic mutations and their association with hallmark cancer pathways, including cell cycle regulation, apoptosis, metabolic reprogramming, and immune evasion.

View Article and Find Full Text PDF