98%
921
2 minutes
20
Carbon dots (CDs) or CDs/polymer composites have been applied in numerous fields. Here, novel CDs were synthesized by carbonization of egg yolk, and characterized by TEM, FTIR, XPS and photoluminescence spectra. The CDs were found to be approximate sphere in shape with an average size of 4.46 ± 1.17 nm, and emitted bright blue photoluminescence under UV irradiation. The photoluminescence of CDs was found selectively quenched by Fe in a linear manner in the range of 0.05-0.45 mM, meaning they could be applied for Fe detection in solution. Moreover, the CDs could be uptaken by HepG2 cells to exhibit bright blue photoluminescence. The intensity could reflect the level of intracellular Fe, indicating they could be further used for cell imaging and intracellular Fe monitoring. Next, dopamine was polymerized on the surface of CDs to obtain the polydopamine (PDA)-coated CDs (CDs@PDA). We found PDA coating could quench the photoluminescence of CDs via inner filter effect, and the degree of quenching was linearly related to the logarithm of DA concentration (Log C). Also, the selectivity experiment indicated the method had a high selectivity for DA over a number of possible interfering species. This indicated the CDs in combination with Tris buffer could be potentially applied as the assay kit of dopamine. At last, the CDs@PDA exhibited excellent photothermal conversion capability, and they could efficiently kill HepG2 cells under NIR laser irradiation. Overall, the CDs and CDs@PDA in this work exhibited many excellent advantages, and could be potentially used for multi-applications, such as Fe sensor in solution and cellular, cell imaging, dopamine assay kit, as well as photothermal agents for cancer therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981840 | PMC |
http://dx.doi.org/10.1186/s11671-023-03809-5 | DOI Listing |
Int J Biol Macromol
September 2025
Department of Nanoscience and Nanoengineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey; Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey. Electronic address:
This study presents the development of multifunctional starch-based biopolymer films reinforced with nitrogen-doped carbon quantum dots (N-CQDs), synthesized via a hydrothermal method, and exhibiting a high quantum yield (~70 %). N-CQDs were incorporated into the starch matrix at varying concentrations (0.1-1.
View Article and Find Full Text PDFJ Fluoresc
September 2025
School of Intelligent Manufacturing, Huzhou College, Huzhou, 313000, P.R. China.
The antibiotic contamination in aquatic environments, particularly in aquaculture systems, poses substantial risks to ecological balance and human health. To address this issue, we engineered a novel ratiometric fluorescent probe utilizing dual-emission carbon dots (D-CDs) synthesized from sustainable biomass carrot and nitrogen-rich precursors (melamine and o-phenylenediamine) through an efficient one-pot hydrothermal approach. The D-CDs exhibited dual emission peaks at 425nm and 540 nm under 370nm excitation.
View Article and Find Full Text PDFAnal Bioanal Chem
September 2025
Hebei Key Laboratory of Public Health Safety, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
This work presents the development of a highly sensitive, selective, and efficient aptamer-based fluorescent sensor for detecting cortisol in human urine. Carbon quantum dots-nucleic acid aptamer (CQDs-Apt) synthesized with excellent photoluminescent properties and stability, were selected as the fluorescent probe. In the presence of MoS-NSs, CQDs-Apt adsorbed onto the surface of MoS-NSs via electrostatic and π-π interactions, leading to strong and rapid fluorescence quenching due to static quenching mechanism between them.
View Article and Find Full Text PDFAdv Pharm Bull
July 2025
Department of Physiology, Bankura Christian College, West Bengal-722101, India.
Carbon-based nanoparticles possess distinctive chemical, physical, and biological characteristics that render them suitable for biomedical uses. This paper reviews recent advancements in carbon-based nanomaterial (CBs) synthesis methods, emphasizing the importance of careful modification for biomedical uses, particularly in the passivation of drugs and chemicals on their surfaces. This review article examines information from 2021-2024 regarding carbon-based nanoparticles and the biomedical uses of graphene, fullerene, carbon nanotubes, nano horns, nanodiamonds, quantum dots, and graphene oxide.
View Article and Find Full Text PDFAnal Methods
September 2025
State Key Laboratory of Advanced Papermaking and Paper-based Materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
Current detection methods for often suffer from lengthy procedures, significant technical limitations, high probe costs, and poor long-term storage stability. Herein, an "on-off-on" fluorescent probe is developed based on mannose-lectin recognition for the rapid and quantitative detection of . The probe utilizes mannose-grafted carbon dots (g-CDs-M), which specifically recognize through interaction with lectins on its surface.
View Article and Find Full Text PDF