Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

High-voltage Li||LiNi Co Mn O (NCM622) batteries have obtained great interest owing to their high energy density. However, some obstacles hinder their practical applications, e.g., the structural failure of NCM622 and corrosion of the Al current collector, which lead to limited cycling life. Herein, an electrolyte additive strategy is proposed for constructing localized high-concentration PF zone near the cathode to form an efficient cathode electrolyte interphase (CEI) for protecting NCM622 and preventing Al current collector from the corrosion. Potassium 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide is used as the additive to regulate the sheath structure of Li solvation to force PF anions away from the solvated Li . During the charge process, the nonsolvated PF anions gather on NCM622 surface to form a localized high-concentration PF zone to facilitate the formation of F-rich CEI on NCM622 for protecting its structural stability and Al current collector.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202201693DOI Listing

Publication Analysis

Top Keywords

localized high-concentration
12
current collector
12
high-concentration zone
8
ncm622
6
construction localized
4
high-concentration region
4
region suppressing
4
suppressing ncm622
4
ncm622 cathode
4
cathode failure
4

Similar Publications

Enzymatic Anisotropic Growth of Gold Nanoparticles Based on DNA Origami Templates.

Small Methods

September 2025

Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China.

Anisotropic gold nanoparticles (AuNPs) exhibit unique physicochemical properties that render them highly valuable for diverse applications. However, precise control over their growth direction and number of branches is challenging with conventional synthesis methods. A DNA origami-templated enzymatic synthesis strategy addresses this limitation.

View Article and Find Full Text PDF

During the electrochemical conversion of CO to acetate on copper-based catalysts, the electrolyte concentration plays a crucial role in acetate selectivity. However, the correlation between the electrolyte concentration and the local microenvironment as well as the reaction kinetics remains unclear. In this work, we report for the first time the impact of KOH concentration on the solvent structure and reaction kinetics for CO reduction to acetate using advanced computational methods.

View Article and Find Full Text PDF

Bone metastases occur in 60%-75% of patients with metastatic breast cancer, reducing survival rates and compromising quality of life. Innovative treatments are urgently needed to sequentially eradicate tumor cells and promote bone regeneration. In this study, a novel Janus hydrogel platform (GA@CaMP) is developed for encapsulating the sonosensitive composite nanomaterial MHP, which enables gene expression regulation, along with oxygen-releasing CaO NPs.

View Article and Find Full Text PDF

We present a microfluidic strategy for fabricating high-concentration alginate microgels through a combination of shell-mediated gelation and osmotic shrinkage. Using a water-in-oil-in-water double emulsion platform, we introduce a thermally responsive oil shell that undergoes a phase transition upon cooling. This phase change allows spatial control over calcium ion diffusion into the alginate core by forming transient diffusion channels, resulting in localized and uniform ionic crosslinking.

View Article and Find Full Text PDF

Zinc oxide-based nanocomposites are of great scientific interest due to their unique optical properties, making them promising materials for applications in plasmonic and sensor systems. In this study, we pay special attention to the analysis of the magnetic field-induced blue shift of the localized surface plasmon resonance (LSPR) peak in ZnO/Ag nanocomposites. This phenomenon was investigated because of its unexpected manifestation in nonmagnetic semiconductor-based systems that may have a potential for developing magnetically tunable plasmonic devices.

View Article and Find Full Text PDF