Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Predict nonhome discharge (NHD) following elective anterior cervical discectomy and fusion (ACDF) using an explainable machine learning model.

Methods: 2227 patients undergoing elective ACDF from 2008 to 2019 were identified from a single institutional database. A machine learning model was trained on preoperative variables, including demographics, comorbidity indices, and levels fused. The validation technique was repeated stratified K-Fold cross validation with the area under the receiver operating curve (AUROC) statistic as the performance metric. Shapley Additive Explanation (SHAP) values were calculated to provide further explainability regarding the model's decision making.

Results: The preoperative model performed with an AUROC of 0.83 ± 0.05. SHAP scores revealed the most pertinent risk factors to be age, medicare insurance, and American Society of Anesthesiology (ASA) score. Interaction analysis demonstrated that female patients over 65 with greater fusion levels were more likely to undergo NHD. Likewise, ASA demonstrated positive interaction effects with female sex, levels fused and BMI.

Conclusion: We validated an explainable machine learning model for the prediction of NHD using common preoperative variables. Adding transparency is a key step towards clinical application because it demonstrates that our model's "thinking" aligns with clinical reasoning. Interactive analysis demonstrated that those of age over 65, female sex, higher ASA score, and greater fusion levels were more predisposed to NHD. Age and ASA score were similar in their predictive ability. Machine learning may be used to predict NHD, and can assist surgeons with patient counseling or early discharge planning.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00586-023-07621-8DOI Listing

Publication Analysis

Top Keywords

machine learning
20
explainable machine
12
asa score
12
nonhome discharge
8
elective anterior
8
anterior cervical
8
cervical discectomy
8
discectomy fusion
8
learning model
8
preoperative variables
8

Similar Publications

Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.

View Article and Find Full Text PDF

Study Objective: Accurately predicting which Emergency Department (ED) patients are at high risk of leaving without being seen (LWBS) could enable targeted interventions aimed at reducing LWBS rates. Machine Learning (ML) models that dynamically update these risk predictions as patients experience more time waiting were developed and validated, in order to improve the prediction accuracy and correctly identify more patients who LWBS.

Methods: The study was deemed quality improvement by the institutional review board, and collected all patient visits to the ED of a large academic medical campus over 24 months.

View Article and Find Full Text PDF

Background: In-hospital cardiac arrest (IHCA) remains a public health conundrum with high morbidity and mortality rates. While early identification of high-risk patients could enable preventive interventions and improve survival, evidence on the effectiveness of current prediction methods remains inconclusive. Limited research exists on patients' prearrest pathophysiological status and predictive and prognostic factors of IHCA, highlighting the need for a comprehensive synthesis of predictive methodologies.

View Article and Find Full Text PDF

Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.

View Article and Find Full Text PDF

Objective: To explore B cell infiltration-related genes in endometriosis (EM) and investigate their potential as diagnostic biomarkers.

Methods: Gene expression data from the GSE51981 dataset, containing 77 endometriosis and 34 control samples, were analyzed to detect differentially expressed genes (DEGs). The xCell algorithm was applied to estimate the infiltration levels of 64 immune and stromal cell types, focusing on B cells and naive B cells.

View Article and Find Full Text PDF