[Research progress on medical image dataset expansion methods].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi

Department of Medical Imaging, Jiangxi Cancer Hospital, Nanchang 330029, P. R. China.

Published: February 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Computer-aided diagnosis (CAD) systems play a very important role in modern medical diagnosis and treatment systems, but their performance is limited by training samples. However, the training samples are affected by factors such as imaging cost, labeling cost and involving patient privacy, resulting in insufficient diversity of training images and difficulty in data obtaining. Therefore, how to efficiently and cost-effectively augment existing medical image datasets has become a research hotspot. In this paper, the research progress on medical image dataset expansion methods is reviewed based on relevant literatures at home and abroad. First, the expansion methods based on geometric transformation and generative adversarial networks are compared and analyzed, and then improvement of the augmentation methods based on generative adversarial networks are emphasized. Finally, some urgent problems in the field of medical image dataset expansion are discussed and the future development trend is prospected.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9989748PMC
http://dx.doi.org/10.7507/1001-5515.202206039DOI Listing

Publication Analysis

Top Keywords

medical image
16
image dataset
12
dataset expansion
12
progress medical
8
training samples
8
expansion methods
8
methods based
8
generative adversarial
8
adversarial networks
8
medical
5

Similar Publications

Background: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by oxidative stress and progressive motor neuron degeneration. This study evaluates the potential neuroprotective effects of caffeine in the Wobbler mouse, an established model of ALS.

Methods: Wobbler mice received caffeine supplementation (60 mg/kg/day) via drinking water, and key parameters, including muscle strength, NAD metabolism, oxidative stress, and motor neuron morphology, were assessed at critical disease stages.

View Article and Find Full Text PDF

RF phase modulation improves quantitative transient state sequences under constrained conditions.

MAGMA

September 2025

Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan 100, 3585CX, Utrecht, The Netherlands.

Objective: Within gradient-spoiled transient-state MR sequences like Magnetic Resonance Fingerprinting or Magnetic Resonance Spin TomogrAphy in Time-domain (MR-STAT), it is examined whether an optimized RF phase modulation can help to improve the precision of the resulting relaxometry maps.

Methods: Using a Cramer-Rao based method called BLAKJac, optimized sequences of RF pulses have been generated for two scenarios (amplitude-only modulation and amplitude + phase modulation) and for several conditions. These sequences have been tested on a phantom, a healthy human brain and a healthy human leg, to reconstruct parametric maps ( and ) as well as their standard deviations.

View Article and Find Full Text PDF

Objective: To improve B field homogeneity in prostate MR imaging and spectroscopy using a custom-designed 16-channel external local shim coil array.

Methods: In vivo prostate imaging was performed in seven healthy volunteers (mean age: 40.7 years) without bowel preparation.

View Article and Find Full Text PDF

MRI markers of neuroinflammation in untreated patients with subclinical generalized anxiety disorder.

J Neural Transm (Vienna)

September 2025

Sárospatak College, Sztárai Institute, University of Tokaj, Eötvöst str. 7, Sárospatak, 3944, Hungary.

Generalized Anxiety Disorder (GAD) is characterized by excessive worry and physical symptoms of prolonged anxiety. Patients with subclinical GAD-states (sub-GAD) do not fulfill the diagnostic criteria of GAD, but they often show a disease burden similar to GAD, and the subclinical state may turn into a full syndrome. Neuroinflammation may contribute to changes in brain structures in sub-GAD, but direct evidence remains lacking.

View Article and Find Full Text PDF

Large language models (LLMs) have been successfully used for data extraction from free-text radiology reports. Most current studies were conducted with LLMs accessed via an application programming interface (API). We evaluated the feasibility of using open-source LLMs, deployed on limited local hardware resources for data extraction from free-text mammography reports, using a common data element (CDE)-based structure.

View Article and Find Full Text PDF