98%
921
2 minutes
20
Superparamagnetic iron oxide nanoparticles (SPION) are widely used in bone tissue engineering because of their unique physical and chemical properties and their excellent biocompatibility. Under the action of a magnetic field, SPIONs loaded in a biological scaffold can effectively promote osteoblast proliferation, differentiation, angiogenesis, and so on. SPIONs have very broad application prospects in bone repair, bone reconstruction, bone regeneration, and other fields. In this paper, several methods for forming biological scaffolds via the biological assembly of SPIONs are reviewed, and the specific applications of these biological scaffolds in bone tissue engineering are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961196 | PMC |
http://dx.doi.org/10.3390/ma16041429 | DOI Listing |
Mol Divers
September 2025
Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.
The catalytic asymmetric Mannich reaction is a multicomponent reaction which affords β-amino carbonyl compounds by utilizing an aldehyde, a primary or secondary amine/ammonia, and a ketone. β-amino carbonyl scaffolds are crucial intermediates for the synthesis of naturally occurring bioactive compounds and their derivatives. The synthesized natural compounds exhibit a broad spectrum of biological activities including anti-fungal, anti-cancer, anti-bacterial, anti-HIV, anti-oxidant, and anti-inflammatory activities.
View Article and Find Full Text PDFElife
September 2025
Chinese Academy of Medical Science Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
Influenza virus neuraminidase (NA) is a crucial target for protective antibodies, yet the development of recombinant NA protein as a vaccine has been held back by instability and variable expression. We have taken a pragmatic approach to improving expression and stability of NA by grafting antigenic surface loops from low-expressing NA proteins onto the scaffold of high-expressing counterparts. The resulting hybrid proteins retained the antigenic properties of the loop donor while benefiting from the high-yield expression, stability, and tetrameric structure of the loop recipient.
View Article and Find Full Text PDFChem Rec
September 2025
Division of Pulmonary, Critical Care and Sleep Medicine, University of California Davis, Davis, 95616, CA, USA.
Chromones, characterized by a benzo-annulated γ-pyrone core, represent a privileged scaffold, offering a diverse pharmacological spectrum. Clinically approved drugs such as disodium cromoglycate and flavoxate underscore their therapeutic significance. Recent advancements in synthetic strategies have facilitated the development of novel chromone derivatives with improved bioactivity, selectively modulating key molecular targets implicated in cancer, inflammation, diabetes, infectious diseases, and neurodegenerative disorders.
View Article and Find Full Text PDFAdv Pharm Bull
July 2025
Department of Physiology, Bankura Christian College, West Bengal-722101, India.
Carbon-based nanoparticles possess distinctive chemical, physical, and biological characteristics that render them suitable for biomedical uses. This paper reviews recent advancements in carbon-based nanomaterial (CBs) synthesis methods, emphasizing the importance of careful modification for biomedical uses, particularly in the passivation of drugs and chemicals on their surfaces. This review article examines information from 2021-2024 regarding carbon-based nanoparticles and the biomedical uses of graphene, fullerene, carbon nanotubes, nano horns, nanodiamonds, quantum dots, and graphene oxide.
View Article and Find Full Text PDFChem Biodivers
September 2025
Department of Chemistry, Govt. Raza P.G. College, Rampur, India.
Parasitic diseases continue to be a major public health burden, particularly in low- and middle-income countries. With the emergence of drug-resistant strains and limitations of current therapies, there is a growing interest in natural products as alternative treatment options. Coumarins, a diverse class of plant-derived secondary metabolites, have shown significant potential as antiparasitic agents.
View Article and Find Full Text PDF