Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

L. (Dioscoreaceae), commonly known as greater yam, water yam, or winged yam, is a popular tuber vegetable/food crop worldwide, with nutritional, health, and economical importance. China is an important domestication center of , and hundreds of cultivars (accessions) have been established. However, genetic variations among Chinese accessions remain ambiguous, and genomic resources currently available for the molecular breeding of this species in China are very scarce. In this study, we generated the first pan-plastome of based on 44 Chinese accessions and 8 African accessions, and investigated the genetic variations, plastome evolution, and phylogenetic relationships within and among members of the section . The pan-plastome encoded 113 unique genes and ranged in size from 153,114 to 153,161 bp. A total of four whole-plastome haplotypes (Haps I-IV) were identified in the Chinese accessions, showing no geographical differentiation, while all eight African accessions shared the same whole-plastome haplotype (Hap I). Comparative genomic analyses revealed that all four whole plastome haplotypes harbored identical GC content, gene content, gene order, and IR/SC boundary structures, which were also highly congruent with other species of . In addition, four highly divergent regions, i.e., -, -, -, and exon 3 of were identified as potential DNA barcodes. Phylogenetic analyses clearly separated all the accessions into four distinct clades corresponding to the four haplotypes, and strongly supported that was more closely related to and than , and . Overall, these results not only revealed the genetic variations among Chinese accessions, but also provided the necessary groundwork for molecular-assisted breeding and industrial utilization of this species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9968032PMC
http://dx.doi.org/10.3390/ijms24043341DOI Listing

Publication Analysis

Top Keywords

chinese accessions
16
genetic variations
12
greater yam
8
phylogenetic analyses
8
accessions
8
variations chinese
8
african accessions
8
content gene
8
pan-plastome greater
4
yam
4

Similar Publications

Background: Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution.

View Article and Find Full Text PDF

Genomic resequencing unravels species differentiation and polyploid origins in the aquatic plant genus Trapa.

Plant J

September 2025

State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, Hubei, 430074, China.

Trapa L. is a non-cereal aquatic crop with significant economic and ecological value. However, debates over its classification have caused uncertainties in species differentiation and the mechanisms of polyploid speciation.

View Article and Find Full Text PDF

As a dual-purpose medicinal and edible plant, Ocimum species offer significant pharmacological potential through their alkaloid metabolites. This study comprehensively analyzed alkaloid profiles in 10 Ocimum accessions using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), integrated with network pharmacology, molecular docking, and transcriptome sequencing to elucidate key pharmacological targets, therapeutic potentials, and biosynthetic pathways. We identified 191 alkaloids categorized into eight classes, with phenolamine and plumerane alkaloids predominating.

View Article and Find Full Text PDF

Abiotic stresses severely threaten global food security, underscoring the need for resilient crop varieties. We identified OsSPT38, a previously uncharacterized SUMO E3 ligase in rice, and discovered a rare gain-of-function mutation (Gly212Asp) that enhances both stress resilience and yield. This phenotype was validated in 18 additional independent mutants and by base editing in the elite indica cultivar Huanghuazhan.

View Article and Find Full Text PDF

Flooding significantly threatens global agricultural productivity, especially under the pressures of climate change. To address this urgent environmental challenge, the development of flooding-tolerant crops is imperative. However, our understanding of the molecular mechanisms underlying flooding tolerance in plants, particularly in crops, remains limited.

View Article and Find Full Text PDF