98%
921
2 minutes
20
Reduction in cardiac contractility is common in severe sepsis. However, the pathological mechanism is still not fully understood. Recently it has been found that circulating histones released after extensive immune cell death play important roles in multiple organ injury and disfunction, particularly in cardiomyocyte injury and contractility reduction. How extracellular histones cause cardiac contractility depression is still not fully clear. In this work, using cultured cardiomyocytes and a histone infusion mouse model, we demonstrate that clinically relevant histone concentrations cause significant increases in intracellular calcium concentrations with subsequent activation and enriched localization of calcium-dependent protein kinase C (PKC) α and βII into the myofilament fraction of cardiomyocytes in vitro and in vivo. Furthermore, histones induced dose-dependent phosphorylation of cardiac troponin I (cTnI) at the PKC-regulated phosphorylation residues (S43 and T144) in cultured cardiomyocytes, which was also confirmed in murine cardiomyocytes following intravenous histone injection. Specific inhibitors against PKCα and PKCβII revealed that histone-induced cTnI phosphorylation was mainly mediated by PKCα activation, but not PKCβII. Blocking PKCα also significantly abrogated histone-induced deterioration in peak shortening, duration and the velocity of shortening, and re-lengthening of cardiomyocyte contractility. These in vitro and in vivo findings collectively indicate a potential mechanism of histone-induced cardiomyocyte dysfunction driven by PKCα activation with subsequent enhanced phosphorylation of cTnI. These findings also indicate a potential mechanism of clinical cardiac dysfunction in sepsis and other critical illnesses with high levels of circulating histones, which holds the potential translational benefit to these patients by targeting circulating histones and downstream pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967552 | PMC |
http://dx.doi.org/10.3390/ijms24043225 | DOI Listing |
Adv Sci (Weinh)
September 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, State Key Laboratory of Advanced Materials for Intelligent Sensing, Tianjin University, Tianjin, 300072, China.
Organic electrode materials have garnered great attention in recent years, owing to their resource sustainability, structural diversity, and superior compatibility with various ionic species. Among them, quinone-based compounds have attracted particular interest. Notably, compared with para-quinone analogs (e.
View Article and Find Full Text PDFMitochondrial DNA A DNA Mapp Seq Anal
September 2025
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
Hibernation is an elaborate response strategy employed by numerous mammals to survive in cold conditions that involves active suppression of metabolism. Despite the role of mitochondria as energy metabolism centers during hibernation, the adaptive and evolutionary mechanisms of mitochondrial genes in hibernating animals, like hedgehogs in eulipotyphlan species, are not yet fully understood. In this study, we sequenced and assembled mitochondrial genomes of the hibernating four-toed hedgehog () and the non-hibernating Asian house shrew ().
View Article and Find Full Text PDFHaematologica
September 2025
Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, Okayama.
Idiopathic multicentric Castleman disease (iMCD) is a rare lymphoproliferative disorder characterized by systemic inflammation and lymphadenopathy. Two major clinical subtypes, idiopathic plasmacytic lymphadenopathy (iMCD-IPL) and iMCD with thrombocytopenia, anasarca, fever, renal dysfunction/reticulin fibrosis, and organomegaly (iMCD-TAFRO), exhibit distinct pathophysiologic mechanisms. While interleukin-6 (IL-6) is known to be elevated in iMCD, the differences in IL-6 production sources between subtypes remain unclear.
View Article and Find Full Text PDFStroke
September 2025
Departments of Radiology and Neurology, Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston (E.L., R.M.P., K.H., E.H.L., E.E.).
Background: Despite promising preclinical results, remote limb ischemic postconditioning efficacy in human stroke treatment remains unclear, with mixed clinical trial outcomes. A potential reason for translational difficulties could be differences in circadian rhythms between nocturnal rodent models and diurnal humans.
Methods: Male C57BL/6J mice were subjected to transient focal cerebral ischemia and then exposed to remote postconditioning during their active or inactive phase and euthanized at 24 hours and 3 days.
Arterioscler Thromb Vasc Biol
September 2025
Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, MA (K. Cui, B.Z., B.W., S.E.-B., A.V., H.C.).
Background: Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipid-laden foam cells and plaques within the arterial wall. Dysfunctional vascular smooth muscle cells (VSMCs), fibroblasts, endothelial cells, and macrophages contribute to disease progression. Here, we report that macrophage-specific expression of epsins, highly conserved endocytic adaptor proteins involved in clathrin-mediated endocytosis, accelerates atherosclerosis in Western diet-fed mice.
View Article and Find Full Text PDF