98%
921
2 minutes
20
Farber disease (FD) and spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) are ultra-rare, autosomal-recessive, acid ceramidase (ACDase) deficiency disorders caused by gene mutations. Currently, 73 different mutations in the gene have been described in humans. These mutations lead to reduced ACDase activity and ceramide (Cer) accumulation in many tissues. Presenting as divergent clinical phenotypes, the symptoms of FD vary depending on central nervous system (CNS) involvement and severity. Classic signs of FD include, but are not limited to, a hoarse voice, distended joints, and lipogranulomas found subcutaneously and in other tissues. Patients with SMA-PME lack the most prominent clinical signs seen in FD. Instead, they demonstrate muscle weakness, tremors, and myoclonic epilepsy. Several ACDase-deficient mouse models have been developed to help elucidate the complex consequences of Cer accumulation. In this review, we compare clinical reports on FD patients and experimental descriptions of ACDase-deficient mouse models. We also discuss clinical presentations, potential therapeutic strategies, and future directions for the study of FD and SMA-PME.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953133 | PMC |
http://dx.doi.org/10.3390/biom13020274 | DOI Listing |
Cardiovasc Toxicol
September 2025
Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Cardiovascular Institute, Guangzhou, 510100, Guangdong, China.
Myocardial infarction (MI), induced by ischemia and hypoxia of the coronary arteries, presents as myocardial necrosis. Patients often experience intense, prolonged retrosternal pain that is unrelieved by rest or nitrate therapy and is frequently associated with high blood myocardial enzyme levels. Physical effort may exacerbate this anxiety, increasing the likelihood of life-threatening consequences such as arrhythmias, shock, or cardiac failure.
View Article and Find Full Text PDFMol Psychiatry
September 2025
Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China.
Alzheimer's disease (AD), a leading cause of dementia, represents a critical unmet global medical need. While the precise mechanisms underlying AD pathogenesis remain elusive, increasing evidence underscores the pivotal role of neuroinflammation in driving cognitive impairment. N6-methyladenosine (m6A), an epigenetic modification regulating RNA metabolism, has been found to be dysregulated in AD.
View Article and Find Full Text PDFLife Sci
September 2025
Department of Experimental Medical Science, Faculty of Medicine, Lund University, 221 84, Lund, Sweden; Wallenberg Center for Molecular Medicine, Faculty of Medicine, Lund University, 221 84, Lund, Sweden. Electronic address:
Aims: Experimental evidence suggests an important role for sphingosine-1-phosphate (S1P) and its generating enzymes sphingosine kinase 1/2 (SphK1/2) in obesity. We and others have shown that plasma S1P levels are elevated in obese mice and humans. Preclinical studies suggest that genetic SphK2 ablation in mice protects from age- and diet-induced obesity and metabolic dysfunction.
View Article and Find Full Text PDFJ Control Release
September 2025
Grenoble Alpes University, INSERM U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Site Santé, Allée des Alpes, 38700 La Tronche, France. Electronic address:
Resistance to chemotherapy remains a significant challenge for the treatment of pancreatic cancer. In addition to conventional therapeutic strategies, photodynamic therapy (PDT) has emerged as a compelling alternative for pancreatic cancer as it synergizes with various chemotherapeutics such as irinotecan, and oxaliplatin. However, the exact mechanisms by which PDT overcomes oxaliplatin resistance remains elusive.
View Article and Find Full Text PDFEur J Pharm Sci
September 2025
Department of Neurology, Massachusetts General Hospital, Boston, MA, 02129, USA; Neuroscience Program, Harvard Medical School, Boston, MA, 02129, USA. Electronic address:
Glioblastoma (GBM) is a highly malignant brain tumor with limited treatment options and poor prognosis. GBM exhibits resistance to conventional therapies, including temozolomide (TMZ), radiotherapy, and immunotherapy, partly due to immunosuppressive mechanisms such as programmed death-ligand 1 (PD-L1) overexpression. To address these challenges, we developed TMZ-loaded nanostructured lipid carriers (NLCs) conjugated with anti-PD-L1 single-chain variable fragments (scFv) for dual chemo-immunotherapy.
View Article and Find Full Text PDF