Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

subsp. (MAH) is one of the most important agents causing non-tuberculosis mycobacterial infection in humans and pigs. There have been advances in genome analysis of MAH from human isolates, but studies of isolates from pigs are limited despite its potential source of infection to human. Here, we obtained 30 draft genome sequences of MAH from pigs reared in Japan. The 30 draft genomes were 4,848,678-5,620,788 bp in length, comprising 4652-5388 coding genes and 46-75 (median: 47) tRNAs. All isolates had restriction modification-associated genes and 185-222 predicted virulence genes. Two isolates had tRNA arrays and one isolate had a clustered regularly interspaced short palindromic repeat (CRISPR) region. Our results will be useful for evaluation of the ecology of MAH by providing a foundation for genome-based epidemiological studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9650289PMC
http://dx.doi.org/10.46471/gigabyte.33DOI Listing

Publication Analysis

Top Keywords

genomic features
4
features subsp
4
subsp isolated
4
pigs
4
isolated pigs
4
pigs in japan
4
in japan subsp
4
mah
4
subsp mah
4
mah agents
4

Similar Publications

Dissecting the Causal Association Between Bulimia Nervosa and Structural Brain Abnormalities: A Two-Sample Bidirectional Mendelian Randomization Study.

Brain Behav

September 2025

The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.

Background: Diverse correlations between structural brain abnormalities and the clinical feature of bulimia nervosa (BN) have been identified in previous observational studies.

Objective: To explore the bidirectional causality between BN and brain structural magnetic resonance imaging (MRI) phenotypes.

Methods: Genome-wide association studies (GWAS) of 2441 participants identified genetic variants associated with disordered eating and predicted BN, whereas UK Biobank 3D-T1 MRI data were used to analyze brain structural phenotypes.

View Article and Find Full Text PDF

LONP1 Variants Are Associated With Clinically Diverse Phenotypes.

Clin Genet

September 2025

Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

LONP1 encodes a mitochondrial protease essential for protein quality control and metabolism. Variants in LONP1 are associated with a diverse and expanding spectrum of disorders, including Cerebral, Ocular, Dental, Auricular, and Skeletal anomalies syndrome (CODAS), congenital diaphragmatic hernia (CDH), and neurodevelopmental disorders (NDD), with some individuals exhibiting features of mitochondrial encephalopathy. We report 16 novel LONP1 variants identified in 16 individuals (11 with NDD, 5 with CDH), further expanding the clinical spectrum.

View Article and Find Full Text PDF

Dysregulated spine morphology is a common feature in the pathology of many neurodevelopmental and neuropsychiatric disorders. Overabundant immature dendritic spines in the hippocampus are causally related to cognitive deficits of Fragile X syndrome (FXS), the most common form of heritable intellectual disability. Recent findings from us and others indicate autophagy plays important roles in synaptic stability and morphology, and autophagy is downregulated in FXS neurons.

View Article and Find Full Text PDF

Human gastroids to model regional patterning in early stomach development.

Nature

September 2025

Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China.

The human stomach features distinct, regionalized functionalities along the anterior-posterior axis. Historically, studies on stomach patterning have used animal models to identify the underlying principles. Recently, human pluripotent stem (hPS)-cell-based gastric organoids for modelling domain-specific development of the fundic and antral epithelium are emerging.

View Article and Find Full Text PDF

Circadian oscillations of gene transcripts rely on a negative feedback loop executed by the activating BMAL1-CLOCK heterodimer and its negative regulators PER and CRY. Although circadian rhythms and CLOCK protein are mostly absent during embryogenesis, the lack of BMAL1 during prenatal development causes an early aging phenotype during adulthood, suggesting that BMAL1 performs an unknown non-circadian function during organism development that is fundamental for healthy adult life. Here, we show that BMAL1 interacts with TRIM28 and facilitates H3K9me3-mediated repression of transposable elements in naïve pluripotent cells, and that the loss of BMAL1 function induces a widespread transcriptional activation of MERVL elements, 3D genome reorganization and the acquisition of totipotency-associated molecular and cellular features.

View Article and Find Full Text PDF