98%
921
2 minutes
20
Introduction: The infections by multidrug-resistant bacteria are a growing threat to human health, and the efficacy of the available antibiotics is gradually decreasing. As such, new antibiotic classes are urgently needed.
Objectives: This study aims to evaluate the antimicrobial activity, safety and mechanism of action of phytochemical-based triphenylphosphonium (TPP) conjugates.
Methods: A library of phytochemical-based TPP conjugates was repositioned and extended, and its antimicrobial activity was evaluated against a panel of Gram-positive (methicillin-resistant Staphylococcus aureus - MRSA) and Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii) and fungi (Candida albicans, Cryptococcus neoformans var. grubii). The compounds' cytotoxicity and haemolytic profile were also evaluated. To unravel the mechanism of action of the best compounds, the alterations in the surface charge, bacterial membrane integrity, and cytoplasmic leakage were assessed.
Results: Structure-activity-toxicity data revealed the contributions of the different structural components (phenolic ring, carbon-based spacers, carboxamide group, alkyl linker) to the compounds' bioactivity and safety. Dihydrocinnamic derivatives 5 m and 5n stood out as safe, potent and selective antibacterial agents against S. aureus (MIC < 0.25 µg/mL; CC > 32 µg/mL; HC > 32 µg/mL). Mechanistic studies suggest that the antibacterial activity of compounds 5 m and 5n may result from interactions with the bacterial cell wall and membrane.
Conclusions: Collectively, these studies demonstrate the potential of phytochemical-based TPP conjugates as a new class of antibiotics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10704080 | PMC |
http://dx.doi.org/10.1016/j.jare.2023.02.004 | DOI Listing |
J Ind Microbiol Biotechnol
September 2025
Department of Biochemistry University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Glycocins are a growing family of ribosomally synthesized and posttranslationally modified peptides (RiPPs) that are O- and/or S-glycosylated. Using a sequence similarity network of putative glycosyltransferases, the thg biosynthetic gene cluster was identified in the genome of Thermoanaerobacterium thermosaccharolyticum. Heterologous expression in Escherichia coli showed that the glycosyltransferase (ThgS) encoded in the biosynthetic gene cluster (BGC) adds N-acetyl-glucosamine (GlcNAc) to Ser and Cys residues of ThgA.
View Article and Find Full Text PDFMacromol Biosci
September 2025
Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada.
Timely and accurate assessment of wounds during the healing process is crucial for proper diagnosis and treatment. Conventional wound dressings lack both real-time monitoring capabilities and active therapeutic functionalities, limiting their effectiveness in dynamic wound environments. Herein, we report our proof-of-concept approach exploring the unique emission properties and antimicrobial activities of carbon nanodots (CNDs) for simultaneous detection and treatment of bacteria.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2025
Associate Professor, School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh-Punjab 147301, India.
Alcoholic fatty liver disease (AFLD) is a leading cause of chronic liver disease worldwide, contributing to significant morbidity and mortality. Despite its growing prevalence, no FDA-approved pharmacological treatments exist, leaving lifestyle modifications as the primary intervention. AFLD pathogenesis involves a complex interplay of lipid accumulation, oxidative stress, insulin resistance, and inflammation, highlighting the need for innovative therapeutic approaches.
View Article and Find Full Text PDFArch Microbiol
September 2025
Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
Salmonella enterica serovar Typhi, the etiological agent of Typhoid fever, remains a critical public health concern associated with high morbidity in many developing countries. The widespread emergence of multidrug-resistant (MDR) Salmonella Typhi strains against the fluoroquinolone group of antibiotics, particularly ciprofloxacin, poses a significant global therapeutic challenge with underlying resistance due to mutations in quinolone-resistance determining region (QRDR) of gyrA gene, encoding DNA gyrase subunit A (GyrA). In pursuit of alternative therapeutic candidates, the present study was designed to evaluate ciprofloxacin analogues against prevalent GyrA mutations (S83F, D87G, and D87N) to overcome fluoroquinolone resistance through machine learning (ML)-based approach.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
Soybean saponins, a class of intricate oleanane-type triterpenoids predominantly present in soybeans, exhibit diverse biological activities. This overview summarizes recent progress in elucidating the biological roles of soybean saponins and their glycosides, encompassing anti-inflammatory, antimutagenic, anticancer, and antimicrobial effects, viewed through a tectonic lens. Additionally, it explores modification methodologies encompassing physical, chemical, and biological strategies.
View Article and Find Full Text PDF